摘要
本文探讨了板凳龙沿阿基米德螺线盘入过程中, 各把手位置的确定方法。首先, 根据各把手盘入的行径特征, 确定对应极角的定量搜索范围, 为后续算法提供初值。随后, 提出了一种用于计算后一把手位置的动态反馈算法, 该算法有效避免了在求解非线性方程组时出现的多解问题。此外, 为提高计算效率, 研究了不同极角与迭代参数的函数设计。在仿真环境下, 验证了该动态反馈算法的有效性。
Author
ZHENG Wenhuan1 , ZHENG Shuyi1 , CHEN Sen1,* , ZHENG Shulin2
Company
1. School of Mathematics and Statistics, Shaanxi Normal University, Shaanxi, Xi' an 710119, China 2. School of Physics and Information Technology, Shaanxi Normal University, Shaanxi, Xi' an 710119, China
参考文献
[1] Liu C. Historical changes of Jiangxi folk sports “Ta Chengxiang bench dragon”[J]. World of Archives, 2014,(35): 154-155.(in Chinese) https://doi.org/10.16565/j.cnki.1006-7744.2014.35.018. [2] Wu L. Aesthetic Review of Huizhou Folk Sports: Based on the Field Investigation of Bench Dragon of Youlong Village[J]. Sports Research and Education, 2021, 36(04): 76-80.(in Chinese) https://doi.org/10.16207/j.cnki.2095-235x.2021.04.013 [3] Liu S. Investigation and Study on Pu Jiang Bench Dragon[J]. Ethnic Art, 2009,(04): 106-108+115.(in Chinese) https://doi.org/10.16564/j.cnki.1003-2568.2009.04.022.(inChinese) [4] Mao R, Wang Q, Wang Z, et al. On the Living Inheritance of Huizhou Bench Dragon in the View of Intangible Cultural Heritage Protection[J]. Martial Arts Studies, 2021, 6(01): 131-132.(in Chinese) https://doi.org/10.13293/j.cnki.wskx.008789. [5] Luo J. The Inheritance of Bench Dragon Folk Culture in the Context of Social Development[J]. Todays Literature and Art Creation, 2022,(40): 104-106.(in Chinese) https://doi.org/10.20024/j.cnki.CN42-1911/I.2022.40.033. [6] Ibrahim H A, Homidan A S. A derivative-free projection method with double inertial effects for solving nonlinear equations[J]. Applied Numerical Mathematics, 2025, 20955-67. https://doi.org/10.1016/J.APNUM.2024.11.006 [7] Li X, Liu M. Solving Nonlinear Equation Systems Based on Improved Whale Optimization Algorithm[J]. Engineering and Management Science, 2024, 6(11).(in Chinese) https://doi.org/10.12238/EMS.V6I11.10005 [8] Popkov S Y. Analytic Method for Solving One Class of Nonlinear Equations[J]. Doklady Mathematics, 2024: 1- 4.(prepublish) https://doi.org/10.1134/S1064562424601392 [9] Mittal K S, Panday S, Jäntschi L. Enhanced Ninth-Order Memory-Based Iterative Technique for Efficiently Solving Nonlinear Equations[J]. Mathematics, 2024, 12(22): 3490-3490. https://doi.org/10.3390/MATH12223490 [10] Ozbay H. Introduction to feedback control theory[M]. CRC Press, 2019. https://doi.org/10.1201/9780203750117 [11] Ross I M, Sekhavat P, Fleming A, et al. Optimal Feedback Control: Foundations, Examples, and Experimental Results for a New Approach[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(2): 307-321. https://doi.org/10.2514/1.29532 [12] Khalil H K, Praly L. High-gain Observers in Nonlinear Feedback Control[J]. International Journal of Robust and Nonlinear Control, 2014, 24(6): 993-1015. https://doi.org/10.1002/rnc.3156 [13] Peng N, Yao B, Wang F. Research of H2 Dynamic Output Feedback Reliable Control Against any Fault[J]. Computer Technology and Automation, 2016, 35(01): 1-4.(in Chinese) https://doi.org/10.16339/j.cnki.jsjsyzdh.2016.01.001. [14] Wei A, Zhao K. Analysis and Design for Linear Systems with Saturation by Linear Feedback[J]. Control and Decision, 2005,(01): 59-61+68.(in Chinese) https://doi.org/10.13195/j.cd.2005.01.59.weiar.013. [15] Long Y, Fan Y. Multiple and Sign-Changing Solutions for Boundary Value Problems of Second-Order Nonlinear Difference Equations[J]. Applied Mathematics, 2018, 31(03): 522-532.(in Chinese) https://doi.org/10.13642/j.cnki.42-1184/o1.2018.03.034.
引用本文
郑雯欢, 郑姝艺, 陈森, 等. 板凳龙行径位置计算的动态反馈算法[J]. 中国应用数学通报, 2025, 3(1): 1-9.
Citation
ZHENG Wenhuan, ZHENG Shuyi, CHEN Sen, et al. Dynamical feedback algorithm for calculating the moving position of bench dragon' s path[J]. Bulletin of Chinese Applied Mathematics, 2025, 3(1): 1-9.