参考文献
[1] D. W. Otter, J. R. Medina, and J. K. Kalita. A survey of the usages of deep learning for natural language processing[J]. IEEE transactions on neural networks and learning systems, 2020, 32(2): 604-624. doi:10.1109/TNNLS.2020.2979670 [2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition[J]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778. [3] G. Nguyen et al. Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey[J]. Artificial Intelligence Review, 2019, 52: 77-124. https://doi.org/10.1007/s10462-018-09679-z [4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi:10.1145/3065386 [5] C. Liang-Chieh, G. Papandreou, I. Kokkinos, et al. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs[C]. International Conference on Learning Representations, 2015. https://doi.org/10.48550/arXiv.1412.7062 [6] W. L. Christian Szegedy, Yangqing Jia, Pierre Sermanet, et al. Going Deeper With Convolutions[J]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2015: 1-9. doi:10.1109/CVPR.2015.7298594 [7] L. Xie and A. Yuille. Genetic cnn[J]. Proceedings of the IEEE international conference on computer vision, 2017: 1379-1388. doi:10.1109/ICCV.2017.154 [8] H. Liu, K. Simonyan, O. Vinyals, et al. Hierarchical Representations for Efficient Architecture Search[C]. International Conference on Learning Representations, 2018. https://doi.org/10.48550/arXiv.1711.00436 [9] H. Cai, T. Chen, W. Zhang, et al. Efficient architecture search by network transformation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, vol. 32, no. 1. https://doi.org/10.1609/aaai.v32i1.11709 [10] B. Zoph, V. Vasudevan, J. Shlens, et al. Learning transferable architectures for scalable image recognition[J]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697-8710. https://doi.org/10.48550/arXiv.1707.07012 [11] E. Real et al. Large-scale evolution of image classifiers [C]. International Conference on Machine Learning, 2017: PMLR, pp. 2902-2911. [12] M. Suganuma, S. Shirakawa, and T. Nagao. A genetic programming approach to designing convolutional neural network architectures[C]. Proceedings of the genetic and evolutionary computation conference, 2017, pp. 497-504. doi:10.1145/3071178.3071229 [13] B. Baker, O. Gupta, N. Naik, et al. Designing Neural Network Architectures using Reinforcement Learning[C]. International Conference on Learning Representations, 2016. doi:10.48550/arXiv.1611.02167 [14] Y. Sun, B. Xue, M. Zhang, et al. Evolving deep convolutional neural networks for image classification[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(2): 394-407. doi:10.1109/TEVC.2019.2916183 [15] T. Back. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms[M]. Oxford university press, 1996. https://doi.org/10.1108/k.1998.27.8.979.4 [16] W. Banzhaf, P. Nordin, R. E. Keller, et al. Francone, Genetic programming: an introduction: on the automatic evolution of computer programs and its applications[M]. Morgan Kaufmann Publishers Inc. , 1998. doi:dl.acm.org/doi/abs/10.5555/323917 [17] H. -G. Beyer and H. -P. Schwefel. Evolution strategies-a comprehensive introduction[J]. Natural computing, 2002, 1: 3-52. https://doi.org/10.1023/A:1015059928466 [18] L. M. Schmitt. Theory of genetic algorithms[J]. Theoretical Computer Science, 2001, 259(1-2): 1-61. https://doi.org/10.1016/S0304-3975(00)00406-0 [19] K. Deb, A. Pratap, S. Agarwal, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197. doi:10.1109/4235.996017 [20] M. Jiang, Z. Huang, L. Qiu, et al. Transfer learningbased dynamic multiobjective optimization algorithms[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(4): 501-514. doi:10.1109/TEVC.2017.2771451 [21] Z. Qiao et al. Gaussian bare-bones gradient-based optimization: Towards mitigating the performance concerns[J]. International Journal of Intelligent Systems, 2022, 37(6): 3193-3254. https://doi.org/10.1002/int.22658 [22] C. Yinnan, Y. Lingjuan, L. Rui, et al. A Multi-period Constrained Multi-objective Evolutionary Algorithm with Orthogonal Learning for Solving the Complex Carbon Neutral Stock Portfolio Optimization Model[J]. Journal of Systems Science and Complexity, p. 0. https://doi.org/10.1007/s11424-023-2406-3 [23] Y. Sun, B. Xue, M. Zhang, et al. Automatically designing CNN architectures using the genetic algorithm for image classification[J]. IEEE transactions on cybernetics, 2020, 50(9): 3840-3854. doi:10.1109/TCYB.2020.2983860 [24] B. Zoph, and Q. Le. Neural Architecture Search with Reinforcement Learning[C]. International Conference on Learning Representations, 2016. https://doi.org/10.48550/arXiv.1611.01578 [25] L. Wen, L. Gao, X. Li, et al. A new genetic algorithm based evolutionary neural architecture search for image classification[J]. Swarm and Evolutionary Computation, 2022, 75: 101191. https://doi.org/10.1016/j.swevo.2022.101191 [26] C. He, H. Tan, S. Huang, et al. Efficient evolutionary neural architecture search by modular inheritable crossover[J]. Swarm and Evolutionary Computation, 2021, 64: 100894. https://doi.org/10.1016/j.swevo.2021.100894 [27] B. Wang, Y. Sun, B. Xue, et al. Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification[C]. 2018 IEEE Congress on Evolutionary Computation(CEC), 2018: IEEE, pp. 1-8. doi:10.1109/CEC.2018.8477735 [28] Y. Sun, H. Wang, B. Xue, et al. Surrogate-assisted evolutionary deep learning using an end-to-end random forest- based performance predictor[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(2): 350-364. doi:10.1109/TEVC.2019.2924461 [29] Z. Lu, K. Deb, E. Goodman, et al. Nsganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search[C]. Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I 16, 2020: Springer, pp. 35-51. https://doi.org/10.1007/978-3-030-58452-8_3 [30] B. Baker, O. Gupta, R. Raskar, et al. Accelerating Neural Architecture Search using Performance Prediction, 2018. https://doi.org/10.48550/arXiv.1705.10823 [31] C. Liu et al. Progressive neural architecture search[C]. Proceedings of the European conference on computer vision(ECCV), 2018, pp. 19-34. https://doi.org/10.1007/978-3-030-01246-5_2 [32] X. Dai et al. Chamnet: Towards efficient network design through platform-aware model adaptation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11398-11407. doi:10.1109/CVPR.2019.01166 [33] M. B. Calisto, and S. K. Lai-Yuen. EMONAS-Net: Efficient multiobjective neural architecture search using surrogate-assisted evolutionary algorithm for 3D medical image segmentation[J]. Artificial Intelligence in Medicine, 2021, 119: 102154. https://doi.org/10.1016/j.artmed.2021.102154 [34] C. Wei, C. Niu, Y. Tang, et al. Npenas: Neural predictor guided evolution for neural architecture search[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022. doi:10.1109/TNNLS.2022.3151160 [35] Y. Peng, A. Song, V. Ciesielski, et al. PRE-NAS: Evolutionary Neural Architecture Search with Predictor[J]. IEEE Transactions on Evolutionary Computation, 2022. doi:10.1109/TEVC.2022.3227562