2025年6月27日 星期五
单节点交叉裂隙油水两相流流动特性实验研究
Experimental Study on Flow Characteristics of Oil-Water Two-Phase Flow in Single-Node Cross Fracture
摘要

单节点交叉裂隙是离散裂隙网络的基本组成单元。本文通过实验方法对单节点交叉裂隙模型中油水两相流流动特性进行了研究。将模型按角度不同分为十六组, 在每组实验过程中依次改变油、水相流速, 实验时控制油、水相流速一直在低流速范围内。使用高速摄像机对实验中流体的流动过程进行记录, 并对结果进行详细分析。在低速流条件下, 油水两相在裂隙中呈弹状流。同时考虑油水相流速和裂隙交叉角度对水段长度和水油段长度比的影响。采用蠕动泵转速代替流速进行讨论, 结果表明: 对于同一交叉裂隙角度模型, 当水泵转速不变时, 水段长度随油泵转速增大逐渐减小, 二者呈幂函数的形式变化。当油泵转速不变时, 随着水泵转速的增大, 水段长度和水油段长度比逐渐增大, 分别呈线性和幂函数形式变化。在不同油泵、水泵转速下, 裂隙交叉角度对水段长和水油段长度比的影响规律不同。

Abstract

Single-node cross fracture is the basic unit of discrete fracture network. In this paper, the flow characteristics of oil-water two-phase flow in single-node cross fracture model are investigated by experimental method. The model was divided into sixteen groups according to different angles, the oil and water phase flow rates were changed sequentially in each group and the velocity of oil and water phase were controlled to be in the low velocity flow rate range all the time during the experiment. The fluid flow process was recorded during the experiment by using the high-speed camera and the results were analyzed in detail. Under the condition of low velocity flow, oil-water two phases were slug flow in fracture. Effects of fracture crossing angle and oil-water phase velocity on the length of water section and the ratio of water-oil section length were also considered. The peristaltic pump speed is used instead of flow rate for the discussion, and the results show that for the same cross-fracture angle model, when the water pump speed is unchanged, the length of the water section gradually decreases in the form. of a power function with the increase of the speed of the oil pump. When the oil pump speed is unchanged, as the water pump speed increases, the length of water section increases in the form. of a linear function and the length ratio of wateroil section increases in the form. of the power function. Under different speeds of oil pump and water pump, the influence of fracture crossing angle on the length of water section and the length ratio of water-oil section is different.  

DOI10.48014/bcce.20231201002
文章类型研究性论文
收稿日期2023-12-01
接收日期2024-01-01
出版日期2024-03-28
关键词单节点交叉裂隙, 油水两相流, 弹状流, 水段长, 油段长, 水油段长度比
KeywordsSingle-node cross fracture, oil-water two-phase flow, slug flow, length of water section, length of oil section, length ratio of water-oil section
作者杨崎浩, 李博, 王治强, 范立峰*
AuthorYANG Qihao, LI Bo, WANG Zhiqiang, FAN Lifeng*
所在单位北京工业大学城市建设学部, 北京 100124
CompanyFaculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
浏览量565
下载量183
参考文献[1] 王文环. 特低渗透油藏驱替及开采特征的影响因素[J]. 油气地质与采收率, 2006, 13(6): 73-75.
https://doi.org/10.3969/j.issn.1009-9603.2006.06.022
[2] 王家禄, 刘玉章, 陈茂谦, 等. 低渗透油藏裂缝动态渗吸机理实验研究[J]. 石油勘探与开发, 2009, 36(1): 86-90.
https://doi.org/10.3321/j.issn:1000-0747.2009.01.011
[3] 范天一, 宋新民, 吴淑红, 等. 低渗透油藏水驱动态裂缝数学模型及数值模拟[J]. 石油勘探与开发, 2015, 42(4): 496-501.
https://doi.org/10.11698/PED.2015.04.11
[4] 刘海娇, 张旭辉, 鲁晓兵. 基于孔与裂隙网络模型的平行微裂隙对驱油的影响规律研究[J]. 力学学报, 2018, 50(4): 890-898.
https://doi.org/10.6052/0459-1879-18-025
[5] 曲鸿雁, 周生田. 裂缝性油藏开发技术进展[J]. 内蒙古石油化工, 2009, 8: 106-107.
https://doi.org/CNKI:SUN:NMSH.0.2009-08-050
[6] Kosakowski G, Berkowitz B. Flow pattern variability in natural fracture intersections[J]. Geophysical Research Letters, 1999, 26(12): 1765-1768.
https://doi.org/10.1029/1999g1900344
[7] 蒋昌华. 水平管道油水两相流流型研究综述[J]. 工程研究———跨学科视野中的工程, 2013, 5(3): 365-373.
https://doi.org/10.3724/SP.J.1224.2013.00365
[8] Hull L C, Koslow K N. Streamline routing through fracture junctions[J]. Water Resources Research, 1986, 22(12): 1731-1734.
https://doi.org/10.1029/wr022i012p01731
[9] 王建华. DFN 模型裂缝建模新技术[J]. 断块油气田, 2008, 15(6): 55-58.
https://doi.org/CNKI:SUN:DKYT.0.2008-06-018
[10] 刘日成, 蒋宇静, 李博, 等. 岩体裂隙网络非线性渗流特性研究[J]. 岩土力学, 2016, 37(10): 2817-2824.
https://doi.org/10.16285/j.rsm.2016.10.011
[11] Zhao Y C, Chen G W, Yuan Q. Liquid-liquid two-phase flow patterns in a rectangular microchannel[J]. AIChE Journal, 2006, 52(12): 4052-4060.
https://doi.org/10.1002/aic.11029
[12] Dessimoz A L, Cavin L, Renken A, et al. Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors[J]. Chemical Engineering Science, 2008, 63(16): 4035-4044.
https://doi.org/10.1016/j.ces.2008.05.005
[13] 刘赵淼, 刘丽昆, 申峰. Y 型微通道两相流内部流动特性[J]. 力学学报, 2014, 46(2): 209-216.
https://doi.org/10.6052/0459-1879-13-228
[14] Steegmans M L J, Schroёn K G P H, Boom R M. Microfluidic Y-junctions: a robust emulsification system with regard to junction design[J]. AIChE Journal, 2010, 56(7): 1946-1949.
https://doi.org/10.1002/aic.12094
[15] Gupta A, Murshed S M S, Kumar R. Droplet formation and stability of flows in a microfluidic T-junction[J]. Applied Physics Letters, 2009, 94(16): 164107.
https://doi.org/10.1063/1.3116089
[16] Madhvanand N K, David W A. Hydrodynamics of liquid- liquid slug flow capillary microreactor: flow regimes, slug size and pressure drop[J]. Chemical Engineering Journal, 2007, 131(1-3): 1-13.
https://doi.org/10.1016/j.cej.2006.11.020
[17] Cherlo S K R, Kariveti S, Pushpavanam S. Experimental and numerical investigations of two-phase(liquidliquid)flow behavior in rectangular microchannels[J]. Industrial and Engineering Chemistry Research, 2010, 49(2): 893-899.
https://doi.org/10.1021/ie900555e
[18] 屈健, 王谦, 何志霞, 等. 矩形微通道内液滴产生和运动特性实验研究[J]. 上海交通大学学报, 2015, 49(1): 86-90.
https://doi.org/10.16183/j.cnki.jsjtu.2015.01.015
引用本文杨崎浩, 李博, 王治强, 等. 单节点交叉裂隙油水两相流流动特性实验研究[J]. 中国土木工程通报, 2024, 2(1): 1-12.
CitationYANG Qihao, LI Bo, WANG Zhiqiang, et al. Experimental study on flow characteristics of oil-water two-phase flow in single-node cross fracture[J]. Bulletin of Chinese Civil Engineering 2024, 2(1): 1-12.