隐私计算:技术方法和行业应用的综述

Privacy-Preserving Computation:A Comprehensive Survey of Methods and Applications

人工智能与大数据的迅猛发展, 使得数据成为了重要的生产资料和流通要素。如何能在安全合规, 确保数据隐私安全的前提下, 充分发挥数据价值, 成为了公众关心的热点问题。隐私计算, 作为新兴的技术体系, 它可以通过密码学、可信硬件、多方安全计算、差分隐私等交叉融合技术, 实现数据的可用不可见, 达到数据安全流通, 发挥数据价值的目的。随着学术界以及工业领域的日益关注, 隐私计算已成为新的技术热点, 也成为商业和资本竞争的热门赛道。文章综述了隐私计算的技术原理, 对隐私计算中的关键技术进行了分类详述, 包括可信计算、多方安全计算、联邦学习、差分隐私、匿踪查询等。同时, 文章也从安全性, 技术优势, 存在的风险点等多维度, 对隐私计算技术进行了对比分析。另外, 文章也总结分析了隐私计算在国内各个行业的发展和应用, 侧面验证了隐私计算在数据流通和数据价值实现等方面的显著贡献。最后, 文章对隐私计算的发展现状和面临挑战进行了总结, 并展望了隐私计算未来的发展趋势。

This paper presents a comprehensive review of privacy-preserving computation, including its various methods, such as Trusted Environment Execution (TEE) computation, Secure Multi-Party Computation (SMPC) , Federated Learning (FL) , Differential Privacy (DP) , and Private Information Retrieval (PIR) , et. It also analyzes and compares these methods from the aspects of security, advantages/disadvantages, and risks. Additionally, this paper investigates the applications and development of privacy-preserving computation, which finally demonstrates that privacy-preserving computation has a significant contribution on data circulation and data value realization. At last, the paper analyzes the current situation and challenges of privacy- preserving computation, while pointing out the future direction of it.