参考文献
[1] Dupraz C, Reid R P, Visscher P T, et al. Microbialites, modern[J]. Encyclopedia of geobiology, 2011: 617-635. https://doi.org/10.1007/springerreference_187365 [2] 肖恩照, 王皓, 覃英伦. 寒武纪芙蓉统均一石沉积组构及环境特征—以河北涞源长山组为例[J]. 沉积学报, 2020, 38(1): 76-90. http://dx.doi.org/10.14027/j.issn.1000-0550.2019.025 [3] Braga J C, Martin J M, Riding R. Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain[J]. Palaios, 1995: 347-361. https://doi.org/10.2307/3515160 [4] 梅冥相. 蓝细菌繁荣滋养的苗岭世光养碳酸盐岩工厂: 以安徽寿县卧龙山剖面崮山组为例[J]. 地质学报, 2021, 95(12): 3571-3591. http://dx.doi.org/10.3969/j.issn.0001-5717.2021.12.001 [5] 梅冥相. 寒武纪苗岭世特别的光养碳酸盐岩工厂: 以江苏徐州贾旺剖面张夏组为例[J]. 地质学报, 2022, 96(3): 744-768. http://dx.doi.org/10.3969/j.issn.0001-5717.2022.03.002 [6] Burne R V, Moore L S. Microbialites: organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987: 241-254. https://doi.org/10.2307/3514674 [7] Riding R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47: 179-214. https://doi.org/10.1046/j.1365-3091.2000.00003.x [8] Riding R. Cambrian calcareous cyanobacteria and algae [M]//Calcareous algae and stromatolites. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991: 305-334. https://doi.org/10.1007/978-3-642-52335-9_16 [9] Riding R. Microbialites, stromatolites, and thrombolites [J]. Encyclopedia of geobiology, 2011: 635-654. https://doi.org/10.1007/springerreference_187366 [10] Riding R. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories [J]. Earth-Science Reviews, 2002, 58(1-2): 163-231. https://doi.org/10.1016/s0012-8252(01)00089-7 [11] Latif K, Xiao E, Riaz M, et al. Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation, Datong(North China Platform)[J]. Carbonates and Evaporites, 2019, 34: 825-843. https://doi.org/10.1007/s13146-018-0472-8 [12] 梅冥相, MUHAMMAD Riaz, 刘丽, 等. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例[J]. 地质论评, 2019, 65(6): 1103-1133. http://dx.doi.org/10.16509/j.georeview.2019.05.004 [13] 梅冥相, 刘丽, 孟庆芬. 光合作用生物膜建造的凝块: 来自于辽东半岛芙蓉统长山组凝块石生物丘中的一些证据[J]. 古地理学报, 2019(2): 254-277. http://dx.doi.org/10.7605/gdlxb.2019.02.015 [14] 梅冥相, Latif K, 孟庆芬. 寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘: 以河北秦皇岛驻操营剖面为例[J]. 地质学报, 2019, 93(1): 227-251. http://dx.doi.org/10.3969/j.issn.0001-5717.2019.01.014 [15] Pruss S B, Finnegan S, Fischer W W, et al. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia[J]. Palaios, 2010, 25(2): 73-84. https://doi.org/10.2110/palo.2009.p09-101r [16] 史晓颖, 陈建强, 梅仕龙. 华北地台东部寒武系层序地层年代格架[J]. 地学前缘, 1997(102): 161-173. [17] 李晓波, 偶奇, 王旖旎, 等. 辽宁兴城地区前寒武纪地层序列和不整合———兼讨论燕山裂陷槽东南部的沉积古地理演化[J]. 沉积学报, 2020, 38(4): 687-711. https://doi.org/10.14027/j.issn.1000-0550.2020.004 [18] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23. http://dx.doi.org/10.13745/j.esf.2016.06.001 [19] 梅冥相, MUHAMMAD Riaz, 刘丽, 等. 辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石[J]. 古地理学报, 2019, 21(1): 31-48. http://dx.doi.org/10.7605/gdlxb.2019.01.002 [20] 梅冥相, MUHAMMAD Riaz, 孟庆芬, 等. 鲕粒滩相灰岩特别的核形石灰岩帽———以山西繁峙茶坊子剖面寒武系张夏组为例[J]. 地质论评, 2019, 65(04): 839-856. http://dx.doi.org/10.16509/j.georeview.2019.04.005 [21] 朱一丹, 秦仁月. 河北秦皇岛驻操营剖面张夏组鲕粒滩叠层石生物丘特征及沉积环境[J]. 东北石油大学学报, 2022, 46(2): 23-32. http://dx.doi.org/10.3969/j.issn.2095-4107.2022.02.003 [22] 梅冥相, 刘丽, 胡媛. 北京西郊寒武系凤山组叠层石生物层[J]. 地质学报, 2015, 89(2): 440-460. http://dx.doi.org/10.19762/j.cnki.dizhixuebao.2015.02.018 [23] 梅冥相, 张瑞, 李屹尧, 等. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J]. 岩石学报, 2017, 33(4): 1073-1093. [24] 梅冥相. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学进展之一[J]. 古地理学报, 2010, 12(5): 549-564. http://dx.doi.org/ doi:10.7605/gdlxb.2010.05.005 [25] 齐永安, 孙晓芳, 代明月, 等. 豫西鲁山寒武系馒头组微生物岩旋回及其演化[J]. 微体古生物学报, 2017, 34(2): 170-178. http://dx.doi.org/10.16087/j.cnki.1000-0674.2017.02.005 [26] Gingras M K, Pemberton S G, Muelenbachs K, et al. Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada[J]. Geobiology, 2004, 2(1): 21-30. https://doi.org/10.1306/8626de55-173b-11d7-8645000102c1865d [27] Roberts J A, Kenward P A, Fowle D A, et al. Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J]. Proceedings of the National Academy of Sciences, 2013, 110(36): 14540-14545. https://doi.org/10.1073/pnas.1305403110 [28] Hunt D, Tucker M E. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-levelfall[J]. Sedimentary Geology, 1992, 81(1-2): 1-9. https://doi.org/10.1016/0037-0738(92)90052-s [29] Meng X, Ge M, Tucker M E. Sequence Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform [J]. Sedimentary Geology, 1997, 114(1-4): 189-222. https://doi.org/10.1306/m57579c1 [30] 倪胜利. 北京西郊下苇甸剖面寒武系叠层石中的底栖鲕粒: 基本特征和重要意义[J]. 地质通报, 2017, 36(2- 3): 485-491. http://dx.doi.org/10.3969/j.issn.1671-2552.2017.02.030 [31] Gerdes G. What are microbial mats? [J]. Microbial mats: Modern and ancient microorganisms in stratified systems, 2010: 3-25. https://doi.org/10.1007/978-90-481-3799-2_1 [32] Richter D K, Neuser R D, Schreuer J, et al. Radiaxial-fibrous calcites: A new look at an old problem[J]. Sedimentary Geology, 2011, 239(1-2): 23-36. https://doi.org/10.1016/j.sedgeo.2011.06.003 [33] Bosak T, Bush J W M, Flynn M R, et al. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats[J]. Geobiology, 2010, 8(1): 45-55. https://doi.org/10.1111/j.1472-4669.2009.00227.x [34] 魏柳斌, 赵俊兴, 苏中堂, 等. 鄂尔多斯盆地奥陶系中组合微生物碳酸盐岩分布规律及沉积模式[J]. 石油勘探 与开发, 2021, 48(6): 1162-1174. http://dx.doi.org/10.11698/PED.2021.06.08 [35] Liu L, Wu Y, Yang H, et al. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China: systematics and significance [J]. Journal of Systematic Palaeontology, 2016, 14(3): 183-210. https://doi.org/10.1080/14772019.2015.1030128 [36] Whitton B A, Mateo P. Rivulariaceae[J]. Ecology of Cyanobacteria II: their diversity in space and time, 2012: 561-591. https://doi.org/10.1007/978-94-007-3855-3_22 [37] Woo J, Chough S K, Han Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia formation(Middle Cambrian), Shandong province, China[J]. Palaios, 2008, 23(1): 55-64. https://doi.org/10.2110/palo.2006.p06-103r [38] Woo J, Chough S K. Growth patterns of the Cambrian microbialite: phototropism and speciation of Epiphyton [J]. Sedimentary Geology, 2010, 229(1-2): 1-8. https://doi.org/10.1016/j.sedgeo.2010.05.006 [39] 殷振轩, 左银辉, 肖恩照. 华北地台寒武系芙蓉统均一石沉积组构分析[J]. 东北石油大学学报, 2022, 46(3): 45-53, 65. http://dx.doi.org/10.3969/j.issn.2095-4107.2022.03.004 [40] Luchinina V A. Remalcis and Epiphyton as different stages in the life cycle of calcareous algae[J]. Paleontological Journal, 2009, 43: 463-468. https://doi.org/10.1134/s0031030109040169 [41] Chafetz H S, Guidry S A. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial vs. abiotic precipitation[J]. Sedimentary Geology, 1999, 126(1- 4): 57-74. https://doi.org/10.1016/s0037-0738(99)00032-9 [42] Adachi N, Nakai T, Ezaki Y, et al. Late Early Cambrianarchaeocyath reefs in Hubei Province, South China: modes of construction during their period of demise[J]. Facies, 2014, 60: 703-717. https://doi.org/10.1007/s10347-013-0376-y [43] Adachi N, Kotani A, Ezaki Y, et al. Cambrian Series 3lithistid sponge-microbial reefs in Shandong Province, North China: reef development after the disappearanceof archaeocyaths[J]. Lethaia, 2015, 48(3): 405-416. https://doi.org/10.1111/let.12118 [44] 韩作振, 陈吉涛, 张晓蕾, 等. 鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究[J]. 地质学报, 2009, 83(8): 1097-1103. http://dx.doi.org/10.3321/j.issn:0001-5717.2009.08.006 [45] 齐永安, 张喜洋, 代明月, 等. 豫西寒武系微生物岩中的葛万菌化石及其微观结构[J]. 古生物学报, 2017, 36(2): 154-167. http://dx.doi.org/10.19800/j.cnki.aps.2017.02.003 [46] de los Ríos A, Ascaso C, Wierzchos J, et al. Microstructureand cyanobacterial composition of microbial matsfrom the High Arctic[J]. Biodiversity and Conservation, 2015, 24: 841-863. https://doi.org/10.1007/s10531-015-0907-7 [47] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonateprecipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162. https://doi.org/10.1016/j.earscirev.2008.10.005 [48] Kiessling W. Geologic and biologic controls on the evolutionof reefs[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 173-192. https://doi.org/10.1146/annurev.ecolsys.110308.120251 [49] Burne R V, Moore L S, Christy A G, et al. Stevensite inthe modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization?[J]. Geology, 2014, 42(7): 575-578. https://doi.org/10.1130/g35484.1 [50] Perri E, Tucker M E, Słowakiewicz M, et al. Carbonateand silicate biomineralization in a hypersaline microbialmat(Mesaieed sabkha, Qatar): roles of bacteria, extracellularpolymeric substances and viruses[J]. Sedimentology, 2018, 65(4): 1213-1245. https://doi.org/10.1111/sed.12419 [51] Gregg J M, Bish D L, Kaczmarek S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratoryand sedimentary environment: a review[J]. Sedimentology, 2015, 62(6): 1749-1769. https://doi.org/10.1111/sed.12202 [52] 辛浩, 肖恩照, 覃英伦, 等. 鲁西地区仙人洞剖面凤山组大型柱状叠层石沉积特征[J]. 东北石油大学学报, 2019, 43(3): 1-11.