2024年5月5日 星期日
河北省秦皇岛市寒武系张夏组顶部均一石主导的微生物礁
Microbial Reefs Predominated by Leiolites in the Zhanxia Formation of Cambrian from Qinhuangdao City,Hebei Province
摘要

叠层石、凝块石、均一石以及树形石被并列划分为典型微生物碳酸盐岩, 其中均一石以隐晶质岩性、凝块结构不发育且无明显宏观构造为特征。自从均一石1995年被命名以来, 在地层中很少得到观察与识别, 而且现代类比物也十分缺乏, 因此使得研究均一石具有极其重要的意义。为了解华北地台寒武系的均一石的特征, 选取河北秦皇岛寒武系张夏组构成三级层序的强迫型海退体系域顶部集中发育的一套由均一石主导的、数十米厚的微生物礁, 采取野外采样及室内镜下微观特征观察相结合的方法进行研究。均一石由致密泥晶和少量微亮晶构成, 构成均一石的致密泥晶中可见类似于现代织线菌 (Plectonema) 的丝状体葛万菌 (Girvanella) , 局部可见灌木丛状的附枝菌 (Epiphyton) 以及基座菌 (Hedstroemia) 。研究结果表明, 均一石主导的微生物礁的形成受复杂的有机矿化过程影响或受早期的蓝细菌主导的、发生微生物膜或微生物席内的石化作用影响。因此在了解古老微生物礁的形成过程中, 受蓝细菌主导、经微生物席钙化作用而形成的秦皇岛寒武系张夏组均一石所主导的微生物礁是一个重要的窗口。

Abstract

Stromatolites, thrombolites, leiolites and dendrites are juxtaposed and classified as typical microbial carbonates, with leiolite characterized by cryptocrystalline lithology, undeveloped agglomerate structure, lacking obvious macroscopic structure and clot. Since its designation in 1995, leiolites have been rarely observed and recognized in strata and modern analogies are scarce, whoch makes the report of a leiolite example extremely important. In order to research the characteristics of leiolites in Cambrian of North China Platform, combine the methods of field sampling observation and observation of indoor microscopic characteristics under the microscope and selected microbial reefs predominated by leiolites with thickness of tens of meters develop intensively at the top of the Forced Regression system domain of the Cambrian Zhangxia Formation in Qinhuangdao, Hebei Province was selected, which constitutes a three-order sequence as research object. Leiolite consists of dense mud crystals and a small amount of microlithophores, and the Filamental Girvanella similar to the modern Plectonema is visible in the dense mud crystals that make up leiolites, while Epiphyton and Hedstroemia can be seen locally in the bushy mud crystals. It is indicated that microbial reefs predominated by leiolites are influenced by complex organic mineralization processes or by early cyanobacteria-dominated lithification occurring within microbial membranes or microbial mats. Therefore, in understanding the formation of ancient microbial reefs, the microbial reef predominated by leiolites at the Cambrian Zhangxia Formation in Qinhuangdao, formed by the calcification of microbial mats, are an important window.  

DOI10.48014/cesr.20230702002
文章类型研究性论文
收稿日期2023-07-02
接收日期2023-07-14
出版日期2023-09-28
关键词秦皇岛, 张夏组, 均一石, 微生物碳酸盐岩, 钙化蓝细菌
KeywordsQinhuangdao city, Zhangxia Formation, lieolite, microbial carbonate, calcified cyanobacteri
作者郭翰良1,*, 秦仁月2
AuthorGUO Hanliang1,*, QIN Renyue2
所在单位1. 中国地质大学 (北京) 地球科学与资源学院, 北京 100083
2. 贵州乌江能源投资有限公司贵州页岩气勘探开发有限责任公司, 遵义 563400
Company1. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
2. Guizhou Wu River Energy Investment Co. , Ltd. Guizhou Shale gas Exploration and Development Co. , Ltd, Zunyi 563400, China
浏览量299
下载量558
基金项目本项研究得到了国家自然科学基金项目“华北克拉通北缘寒武纪生物丘沉积组构多样性研究”(资助号 41492090)的资助
参考文献[1] Dupraz C, Reid R P, Visscher P T, et al. Microbialites, modern[J]. Encyclopedia of geobiology, 2011: 617-635.
https://doi.org/10.1007/springerreference_187365
[2] 肖恩照, 王皓, 覃英伦. 寒武纪芙蓉统均一石沉积组构及环境特征—以河北涞源长山组为例[J]. 沉积学报, 2020, 38(1): 76-90.
http://dx.doi.org/10.14027/j.issn.1000-0550.2019.025
[3] Braga J C, Martin J M, Riding R. Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain[J]. Palaios, 1995: 347-361.
https://doi.org/10.2307/3515160
[4] 梅冥相. 蓝细菌繁荣滋养的苗岭世光养碳酸盐岩工厂: 以安徽寿县卧龙山剖面崮山组为例[J]. 地质学报, 2021, 95(12): 3571-3591.
http://dx.doi.org/10.3969/j.issn.0001-5717.2021.12.001
[5] 梅冥相. 寒武纪苗岭世特别的光养碳酸盐岩工厂: 以江苏徐州贾旺剖面张夏组为例[J]. 地质学报, 2022, 96(3): 744-768.
http://dx.doi.org/10.3969/j.issn.0001-5717.2022.03.002
[6] Burne R V, Moore L S. Microbialites: organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987: 241-254.
https://doi.org/10.2307/3514674
[7] Riding R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47: 179-214.
https://doi.org/10.1046/j.1365-3091.2000.00003.x
[8] Riding R. Cambrian calcareous cyanobacteria and algae [M]//Calcareous algae and stromatolites. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991: 305-334.
https://doi.org/10.1007/978-3-642-52335-9_16
[9] Riding R. Microbialites, stromatolites, and thrombolites [J]. Encyclopedia of geobiology, 2011: 635-654.
https://doi.org/10.1007/springerreference_187366
[10] Riding R. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories [J]. Earth-Science Reviews, 2002, 58(1-2): 163-231.
https://doi.org/10.1016/s0012-8252(01)00089-7
[11] Latif K, Xiao E, Riaz M, et al. Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation, Datong(North China Platform)[J]. Carbonates and Evaporites, 2019, 34: 825-843.
https://doi.org/10.1007/s13146-018-0472-8
[12] 梅冥相, MUHAMMAD Riaz, 刘丽, 等. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例[J]. 地质论评, 2019, 65(6): 1103-1133.
http://dx.doi.org/10.16509/j.georeview.2019.05.004
[13] 梅冥相, 刘丽, 孟庆芬. 光合作用生物膜建造的凝块: 来自于辽东半岛芙蓉统长山组凝块石生物丘中的一些证据[J]. 古地理学报, 2019(2): 254-277.
http://dx.doi.org/10.7605/gdlxb.2019.02.015
[14] 梅冥相, Latif K, 孟庆芬. 寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘: 以河北秦皇岛驻操营剖面为例[J]. 地质学报, 2019, 93(1): 227-251.
http://dx.doi.org/10.3969/j.issn.0001-5717.2019.01.014
[15] Pruss S B, Finnegan S, Fischer W W, et al. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia[J]. Palaios, 2010, 25(2): 73-84.
https://doi.org/10.2110/palo.2009.p09-101r
[16] 史晓颖, 陈建强, 梅仕龙. 华北地台东部寒武系层序地层年代格架[J]. 地学前缘, 1997(102): 161-173.
[17] 李晓波, 偶奇, 王旖旎, 等. 辽宁兴城地区前寒武纪地层序列和不整合———兼讨论燕山裂陷槽东南部的沉积古地理演化[J]. 沉积学报, 2020, 38(4): 687-711.
https://doi.org/10.14027/j.issn.1000-0550.2020.004
[18] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23.
http://dx.doi.org/10.13745/j.esf.2016.06.001
[19] 梅冥相, MUHAMMAD Riaz, 刘丽, 等. 辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石[J]. 古地理学报, 2019, 21(1): 31-48.
http://dx.doi.org/10.7605/gdlxb.2019.01.002
[20] 梅冥相, MUHAMMAD Riaz, 孟庆芬, 等. 鲕粒滩相灰岩特别的核形石灰岩帽———以山西繁峙茶坊子剖面寒武系张夏组为例[J]. 地质论评, 2019, 65(04): 839-856.
http://dx.doi.org/10.16509/j.georeview.2019.04.005
[21] 朱一丹, 秦仁月. 河北秦皇岛驻操营剖面张夏组鲕粒滩叠层石生物丘特征及沉积环境[J]. 东北石油大学学报, 2022, 46(2): 23-32.
http://dx.doi.org/10.3969/j.issn.2095-4107.2022.02.003
[22] 梅冥相, 刘丽, 胡媛. 北京西郊寒武系凤山组叠层石生物层[J]. 地质学报, 2015, 89(2): 440-460.
http://dx.doi.org/10.19762/j.cnki.dizhixuebao.2015.02.018
[23] 梅冥相, 张瑞, 李屹尧, 等. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J]. 岩石学报, 2017, 33(4): 1073-1093.
[24] 梅冥相. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学进展之一[J]. 古地理学报, 2010, 12(5): 549-564.
http://dx.doi.org/
doi:10.7605/gdlxb.2010.05.005
[25] 齐永安, 孙晓芳, 代明月, 等. 豫西鲁山寒武系馒头组微生物岩旋回及其演化[J]. 微体古生物学报, 2017, 34(2): 170-178.
http://dx.doi.org/10.16087/j.cnki.1000-0674.2017.02.005
[26] Gingras M K, Pemberton S G, Muelenbachs K, et al. Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada[J]. Geobiology, 2004, 2(1): 21-30.
https://doi.org/10.1306/8626de55-173b-11d7-8645000102c1865d
[27] Roberts J A, Kenward P A, Fowle D A, et al. Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J]. Proceedings of the National Academy of Sciences, 2013, 110(36): 14540-14545.
https://doi.org/10.1073/pnas.1305403110
[28] Hunt D, Tucker M E. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level􀆳fall[J]. Sedimentary Geology, 1992, 81(1-2): 1-9.
https://doi.org/10.1016/0037-0738(92)90052-s
[29] Meng X, Ge M, Tucker M E. Sequence Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform [J]. Sedimentary Geology, 1997, 114(1-4): 189-222.
https://doi.org/10.1306/m57579c1
[30] 倪胜利. 北京西郊下苇甸剖面寒武系叠层石中的底栖鲕粒: 基本特征和重要意义[J]. 地质通报, 2017, 36(2- 3): 485-491.
http://dx.doi.org/10.3969/j.issn.1671-2552.2017.02.030
[31] Gerdes G. What are microbial mats? [J]. Microbial mats: Modern and ancient microorganisms in stratified systems, 2010: 3-25.
https://doi.org/10.1007/978-90-481-3799-2_1
[32] Richter D K, Neuser R D, Schreuer J, et al. Radiaxial-fibrous calcites: A new look at an old problem[J]. Sedimentary Geology, 2011, 239(1-2): 23-36.
https://doi.org/10.1016/j.sedgeo.2011.06.003
[33] Bosak T, Bush J W M, Flynn M R, et al. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats[J]. Geobiology, 2010, 8(1): 45-55.
https://doi.org/10.1111/j.1472-4669.2009.00227.x
[34] 魏柳斌, 赵俊兴, 苏中堂, 等. 鄂尔多斯盆地奥陶系中组合微生物碳酸盐岩分布规律及沉积模式[J]. 石油勘探 与开发, 2021, 48(6): 1162-1174.
http://dx.doi.org/10.11698/PED.2021.06.08
[35] Liu L, Wu Y, Yang H, et al. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China: systematics and significance [J]. Journal of Systematic Palaeontology, 2016, 14(3): 183-210.
https://doi.org/10.1080/14772019.2015.1030128
[36] Whitton B A, Mateo P. Rivulariaceae[J]. Ecology of Cyanobacteria II: their diversity in space and time, 2012: 561-591.
https://doi.org/10.1007/978-94-007-3855-3_22
[37] Woo J, Chough S K, Han Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia formation(Middle Cambrian), Shandong province, China[J]. Palaios, 2008, 23(1): 55-64.
https://doi.org/10.2110/palo.2006.p06-103r
[38] Woo J, Chough S K. Growth patterns of the Cambrian microbialite: phototropism and speciation of Epiphyton [J]. Sedimentary Geology, 2010, 229(1-2): 1-8.
https://doi.org/10.1016/j.sedgeo.2010.05.006
[39] 殷振轩, 左银辉, 肖恩照. 华北地台寒武系芙蓉统均一石沉积组构分析[J]. 东北石油大学学报, 2022, 46(3): 45-53, 65.
http://dx.doi.org/10.3969/j.issn.2095-4107.2022.03.004
[40] Luchinina V A. Remalcis and Epiphyton as different stages in the life cycle of calcareous algae[J]. Paleontological Journal, 2009, 43: 463-468.
https://doi.org/10.1134/s0031030109040169
[41] Chafetz H S, Guidry S A. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial vs. abiotic precipitation[J]. Sedimentary Geology, 1999, 126(1- 4): 57-74.
https://doi.org/10.1016/s0037-0738(99)00032-9
[42] Adachi N, Nakai T, Ezaki Y, et al. Late Early Cambrianarchaeocyath reefs in Hubei Province, South China: modes of construction during their period of demise[J]. Facies, 2014, 60: 703-717.
https://doi.org/10.1007/s10347-013-0376-y
[43] Adachi N, Kotani A, Ezaki Y, et al. Cambrian Series 3lithistid sponge-microbial reefs in Shandong Province, North China: reef development after the disappearanceof archaeocyaths[J]. Lethaia, 2015, 48(3): 405-416.
https://doi.org/10.1111/let.12118
[44] 韩作振, 陈吉涛, 张晓蕾, 等. 鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究[J]. 地质学报, 2009, 83(8): 1097-1103.
http://dx.doi.org/10.3321/j.issn:0001-5717.2009.08.006
[45] 齐永安, 张喜洋, 代明月, 等. 豫西寒武系微生物岩中的葛万菌化石及其微观结构[J]. 古生物学报, 2017, 36(2): 154-167.
http://dx.doi.org/10.19800/j.cnki.aps.2017.02.003
[46] de los Ríos A, Ascaso C, Wierzchos J, et al. Microstructureand cyanobacterial composition of microbial matsfrom the High Arctic[J]. Biodiversity and Conservation, 2015, 24: 841-863.
https://doi.org/10.1007/s10531-015-0907-7
[47] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonateprecipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
https://doi.org/10.1016/j.earscirev.2008.10.005
[48] Kiessling W. Geologic and biologic controls on the evolutionof reefs[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 173-192.
https://doi.org/10.1146/annurev.ecolsys.110308.120251
[49] Burne R V, Moore L S, Christy A G, et al. Stevensite inthe modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization?[J]. Geology, 2014, 42(7): 575-578.
https://doi.org/10.1130/g35484.1
[50] Perri E, Tucker M E, Słowakiewicz M, et al. Carbonateand silicate biomineralization in a hypersaline microbialmat(Mesaieed sabkha, Qatar): roles of bacteria, extracellularpolymeric substances and viruses[J]. Sedimentology, 2018, 65(4): 1213-1245.
https://doi.org/10.1111/sed.12419
[51] Gregg J M, Bish D L, Kaczmarek S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratoryand sedimentary environment: a review[J]. Sedimentology, 2015, 62(6): 1749-1769.
https://doi.org/10.1111/sed.12202
[52] 辛浩, 肖恩照, 覃英伦, 等. 鲁西地区仙人洞剖面凤山组大型柱状叠层石沉积特征[J]. 东北石油大学学报, 2019, 43(3): 1-11.
引用本文郭翰良, 秦仁月. 河北省秦皇岛市寒武系张夏组顶部均一石主导的微生物礁[J]. 中国地球科学评论, 2023, 2(3): 19-31.
CitationGUO Hanliang, QIN Renyue. Microbial reefs predominated by leiolites in the Zhanxia Formation of Cambrian from Qinhuangdao city, Hebei Province[J]. Chinese Earth Sciences Review, 2023, 2(3): 19-31.