摘要 | 地层孔隙压力在石油钻井中起着至关重要的作用, 是石油钻井中套管方案设计和泥浆比重优化不可缺少的基本参数。利用地震、测井和随钻录井资料可以预测地层孔隙压力。然而, 由于碳酸盐岩地层的隐蔽性和复杂性, 以及地震、测井和泥浆测井资料的固有误差, 地层孔隙压力一直难以准确预测。为了定量描述地层孔隙压力的不确定性, 提出了一种预测地层孔隙压力的概率方法。首先, 根据本文的方法得到了任意井深的伊顿指数和正常压实趋势线分布的统计性质。然后根据蒙特卡罗模拟方法, 生成相应分布特征对应的随机数, 计算任意深度的孔隙压力样本集, 最后选择正态分布拟合任意深度的孔隙压力样本集, 推导出孔隙压力在任意深度下的累积概率分布结果。选取各深度点上累积概率分别为0. 05和0. 95的孔隙压力值, 沿整个井段进行串联, 得到置信度为90%的地层压力区间剖面。实例结果显示, 该方法综合了测井和记录信息, 得到了更准确的孔隙压力预测结果, 不确定性分析后得到的结果为碳酸盐岩地层孔隙压力的预测提供了参考价值。 |
Abstract | Formation pore pressure plays a vital role in oil drilling, and is an indispensable basic parameter for casing scheme design and mud specific gravity optimization in oil drilling. Formation pore pressures can be predicted through the data of seism, logging, and logging-while-drilling. However, due to the concealment and complexity of carbonate formations, as well as the inherent errors in the date of seism, logging, and mud loging, formation pore pressure is always difficult to predict accurately. Thus, a probabilistic method for predicting formation pore pressure is proposed to quantitatively describe the uncertainty of the pressure. Firstly, the method in this paper provides statistical properties of Eaton index and the normal compaction trend line distribution of random well depth. Then, with the Monte Carlo simulation method, the random number corresponding to the distribution features can be generated. And further the pore pressure sample set of any depth can be calculated. Finally a normal distribution is selected to fit the pore pressure sample set of any depth, and the cumulative probability distribution of pore pressure at any depth is derived. The pore pressure values with the cumulative probabilities of 0. 05 and 0. 95 at each depth point were selected and connected in series along the entire well section to obtain a formation pore pressure interval profile with a confidence of 90%. The case study shows that the method, integrating the logging and information recorded, obtains more accurate pore pressure prediction results, which provides a reference value for the uncertainty analysis of pore pressure in carbonate formation. |
DOI | 10.48014/cpngr.20240626002 |
文章类型 | 研究性论文 |
收稿日期 | 2024-06-12 |
接收日期 | 2024-06-20 |
出版日期 | 2024-06-28 |
关键词 | 碳酸盐岩地层, 地层孔隙压力, 不确定性, 蒙特卡洛模拟 |
Keywords | Carbonate formation, formation pore pressure, uncertainty, Monte Carlo simulation |
作者 | 向幸运 |
Author | XIANG Xingyun |
所在单位 | 中石化华北石油工程有限公司, 郑州 450000 |
Company | Sinopec North China Petroleum Engineering Co. , Ltd. , Zhengzhou 450000, China |
浏览量 | 195 |
下载量 | 73 |
参考文献 | [1] 高德利. 复杂地质条件下深井超深井钻井技术[M]. 北京: 石油工业出版社, 2004. [2] 李琪, 于琳琳, 刘志坤, 等. 钻井风险因素综合评价方法及模型建立[J]. 天然气工业, 2008, 28(5): 120-126. https://doi.org/JournalArticle/5aec9164c095d710d40193e9 [3] 曾义金, 刘建立. 深井超深井钻井技术现状和发展趋势[J]. 石油钻探技术, 2005, 33(5): 1-5. https://doi.org/10.3969/j.issn.1001-0890.2005.05.001 [4] Hottmann C, Johnson R. Estimation of formation pressures from log-derived shale properties[J]. Journal of Petroleum Technology, 1965, 17(6): 717-722. https://doi.org/10.2118/1110-PA [5] Foster J. Estimation of Formation pressures from electrical surveys-offshore Louisiana[J]. Journal of Petroleum Technology, 1966, 18(2): 165-171. https://doi.org/10.2118/1200-PA [6] Mathews W, Kelly J. How to predict formation pressure and fracture gradient[J]. Oil and Gas Journal, 1967, 65(8): 92-106. [7] Fertl W. Abnormal formation pressures[M]. Amsterdam: Elsevier, 1976. [8] Magara K. Compaction and fluid migration: practical petroleum geology[M]. New York: Elsevier Scientific Publishing Company, 1978. [9] Bingham M. A new approach to interpreting rock drill ability[J]. Oil and Gas Journal, 1965, 62(46): 80-85. [10] Jorden J, Shirley O. Application of drilling performance data to overpressure detection[J]. Journal of Petroleum Technology, 1966, 18(11): 1387-1394. https://doi.org/10.2118/1407-PA [11] Rehm B, McClendon R. Measurement of formation pressure from drilling data[C]. Fall Meeting of the Society of Petroleum Engineers of AIME, New Orleans, Louisiana, October 1971: SPE-3601-MS. https://doi.org/10.2118/3601-MS [12] Eaton B. The effect of overburden stress on geopressure prediction form well logs[J]. Journal of Petroleum Technology, 1972, 24(8): 929-934. https://doi.org/10.2118/3719-PA [13] Sayers C, Johnson G, Denyer G. Predrill pore-pressure prediction using seismic data[J]. Geophysics, 2002, 67(4): 1286-1292. https://doi.org/10.2118/59122-MS [14] Doyen P, Malinverno A, Prioul R, et al. Seismic pore pressure prediction with uncertainty using a probabilistic mechanical earth model[C]. SEG Annual Meeting, Dallas, Texas, October 2003: SEG-2003-1366. https://doi.org/10.1190/1.1817542 [15] Moos D, Peska P, Ward C, et al. Quantitative Risk Assessment Applied to Pre-drill Pore Pressure, Sealing Potential, and Mud Window Predictions from Seismic Data[C]. North America Rock Mechanics Symposium, Houston, Texas, June 2004: ARMA-04-499. [16] Wessling S, Bartetzko A, Tesch P. Quantification of uncertainty in a multistage/multiparameter modeling workflow: Pore pressure from geophysical well logs[J]. Geophysics, 2013, 78(3): WB101-WB112. https://doi.org/10.1190/geo2012-0402.1 [17] 刘宇坤, 何生, 何治亮, 等. 碳酸盐岩超压岩石物理模拟实验及超压预测理论模型[J]. 石油与天然气地质, 2019, 40(4): 716-724. https://doi.org/10.11743/ogg20190403 |
引用本文 | 向幸运. 不确定条件下碳酸盐岩地层孔隙压力预测方法研究[J]. 中国石油天然气研究, 2024, 3(2): 5-15. |
Citation | XIANG Xingyun. Research on pore pressure prediction of carbonate formation under uncertainconditions[J]. Chinese Petroleum and Natural Gas Research, 2024, 3(2): 5-15. |