摘要 | 计算某种“闭形式”的不定积分,即符号积分,是计算机代数的一个重要研究领域。在部分实现递归Risch算法后,人们发现并行积分方法可以实现更高效的算法,其中最著名的算法之一是Risch-Norman算法。然而,这种方法依赖于积分中无法准确得到的多项式次数的估计。Norman基于完备化思想提供了一种避免次数估计的替代方法。然而,根据微分域的构造和项序的选择,可能会发生完备化过程不能终止并产生无限多约化法则的情况。我们将Norman方法优化并应用于在物理学中有重要应用的Airy函数生成的微分环。通过确定适当的项序,我们用有限个公式表示无限多个约化法则,并给出了Airy函数的两个完备约化系统。 |
Abstract | The computation of indefinite integrals in certain kind of “closed form”,which is known as symbolic integration,is an important research subarea of computer algebra.After implementing the recursive Risch algorithm partly,it was realized that efficient algorithms can be achieved by a parallel approach.This led to the famous Risch-Norman algorithm.However,this approach relies on an ansatz with heuristic degree bounds.Norman’s completion-based approach provides an alternative for finding the numerator of the integral avoiding heuristic degree bounds.However,depending on the differential field and on the selected ordering of terms,it may happen that the completion process does not terminate and yields an infinite number of reduction rules.We apply Norman’s approach to the differential field generated by Airy functions,which play an important role in physics.By fixing adapted orderings and analyzing the process in the concrete case,we present two complete reduction systems for Airy functions by finitely many formulae to denote infinitely many reduction rules. |
DOI | 10.48014/bcam.20230724002 |
文章类型 | 研究性论文 |
收稿日期 | 2023-07-24 |
接收日期 | 2023-08-28 |
出版日期 | 2023-12-28 |
关键词 | 符号积分, Risch-Norman算法, 无限约化系统 |
Keywords | Symbolic integration, Risch-Norman algorithm, Infinite reduction systems |
作者 | 杜昊1,2,*, Clemens G.Raab3 |
Author | Hao Du1,2,*, Clemens G.Raab3 |
所在单位 | 1. 北京邮电大学理学院, 北京 102206 2. 教育部数学与信息网络重点实验室, 北京 102206 3. 约翰·开普勒 (林茨) 大学代数教研室, 林茨 4040. |
Company | 1. School of Science, Beijing University of Posts and Telecommunications (BUPT) , Beijing 102206, China 2. Key Laboratory of Mathematics and Information Networks (BUPT) , Ministry of Education, Beijing 102206, China 3. Institute for Algebra, Johannes Kepler University Linz (JKU) , Linz 4040, Austria |
浏览量 | 671 |
下载量 | 197 |
基金项目 | This research was supported by the Austrian Science Fund(FWF): P 31952,by the National Natural Science Foundation of China(NSFC): 12201065 and by the Basic Research Fund of Beijing University of Posts and Telecommunications( BUPT): 500422372,500423226. |
参考文献 | [1] Bostan A.;Chen S.;Chyzak F.;Li Z.;Xin G.Hermite Reduction and Creative Telescoping for Hyperexponential Functions.Proceedings of the International Symposi- um on Symbolic and Algebraic Computation,pages 77- 84,ACM Press,2013. https://doi.org/10.48550/arXiv.1301.5038 [2] Bostan A.;Chyzak F.;Lairez P;Salvy B.Generalized Hermite Reduction,Creative Telescoping,and Definite Integration of D-Finite Functions.Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 95-102,ACM Press,2018. https://doi.org/10.1145/ 3208976.3208992 [3] Bostan A.;Lairez P;Salvy B.Creative telescoping for rational functions using the Griffiths-Dwork method.Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 93-100,ACM Press,2013. https://doi.org/10.1145/2465506.2465935 [4] Boettner S.T.Mixed Transcendental and Algebraic Extensions for the Risch-Norman Algorithm.PhD Thesis, Tulane Univ.,New Orleans,USA,2010. [5] Bronstein M.Symbolic Integration I-Transcendental Functions.2nd ed.,Springer,2005. https://doi.org/10.1007/b138171 [6] Bronstein M.pmint-The Poor Man’s Integrator.Version 1.1,2005. http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/ [7] Chen S.;Du H.;Li Z.Additive Decompositions in Primitive Extensions.Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 135-142,ACM Press,2018. https://doi.org/10.1145/3208976.3208987 [8] Chen S.;Kauers M.;Koutschan C.Reduction-Based Creative Telescoping for Algebraic Functions.Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 175-182,ACM Press,2016. https://doi.org/10.1145/ 2930889.2930901 [9] Chen S.;van Hoeij M.;Kauers M.;Koutschan C.Reduction- based creative telescoping for Fuchsian D-finite functions.Journal of Symbolic Computation 85,Pages 108-127,2018. https://doi.org/10.1016/j.jsc.2017.07.005 [10] Davenport J.H.The Parallel Risch Algorithm(I). Proc.EUROCAM’82,pages 144- 157,1982. https://dl.acm.org/doi/10.5555/ 646656.700248 [11] Olver F.W.J.;Olde Daalhuis A.B.;Lozier D.W.; Schneider B.I.;Boisvert R.F.;Clark C.W.;Miller B. R.;Saunders B.V.;Cohl H.S.;McClain M.A.(eds.) NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/,Release 1.1.10 of 2023-6-15. [12] Du H.;Guo J.;Li Z.;Wong E.An Additive Decomposition in Logarithmic Towers and Beyond.Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 146-153,ACM Press,2020. https://doi.org/10.1145/ 3373207.3404025 [13] Davenport J.H.;Trager B.M.On the Parallel Risch Algorithm(II).ACM Trans.Mathematical Software 11,pages 356-362,1985. https://doi.org/10.1145/6187.6189 [14] Geddes K.O.;Stefanus L.Y..On the Risch-Norman Integration Method and Its Implementation in MAPLE. Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 212-217, ACM Press,1989. https://doi.org/10.1145/74540.74567 [15] Geddes K.O.;Czapor S.R.;Labahn G.Algorithms for Computer Algebra.Springer Science & Business Media,1992. [16] van der Hoeven J.Constructing reductions for creative telescoping-The general differentially finite case.Applicable Algebra in Engineering,Communication and Computing 32,pages 575-602,2021. https://doi.org/10.1007/s00200-020-00413-3 [17] Kovacic J.J.An Algorithm for Solving Second Order Linear Homogeneous Differential Equations.Journal of Symbolic Computation 2,pages 3-43,1986. https://doi.org/10.1016/ S0747-7171(86)80010-4 [18] Norman A.C.A Critical-Pair/Completion based Integration Algorithm.Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 201-205,1990. https://doi.org/10.1145/96877.96926 [19] Norman A.C.;Moore P.M.A.Implementing the new Risch Integration algorithm.Proc.4th International Colloquium on Advanced Computing Methods in Theoretical Physics,pages 99-110,1977. [20] Raab C.G.Definite Integration in Differential Fields. PhD thesis,RISC-Linz,Johannes Kepler University, Linz,Austria,2012. http://www.risc.jku.at/publications/download/risc_4583/PhD_CGR.pdf [21] Ritt J.F.Integration in Finite Terms-Liouville’s Theory of Elementary Methods.Columbia University Press, New York,1948. https://doi.org/ 10.1007/978-3-030-98767-1_3 [22] Risch R.H.The problem of integration in finite terms. Transactions of the American Mathematical Society 139,pages 167-189,1969. [23] Risch R.H.The solution of integration in finite terms. Bulletin of the American Mathematical Society 76,pages 605-608,1970. [24] Raab C.G.;Singer M.F.(eds.).Integration in Finite Terms:Fundamental Sources.Texts & Monographs in Symbolic Computation,Springer,2022. https://doi.org/10.1007/978-3-030-98767-1 [25] Schneider C.;Blümlein J.(eds.).Computer algebra in quantum field theory:Integration,summation and special functions.Texts & Monographs in Symbolic Computation, Springer,Vienna,2013. [26] Vallée O.;Soares M.Airy Functions and Applications to Physics.2nd ed.,Imperial College Press,2010. |
引用本文 | 杜昊,Clemens Raab. 艾里函数的完备约化系统[J]. 中国应用数学通报,2023,1(1):10-22. |
Citation | Hao Du,Clemens Raab.Complete reduction systems for Airy functions[J].Bulletin of Chinese Applied Mathematics,2023,1(1):10-22. |