2024年5月3日 星期五
聚多巴胺涂层修饰海藻酸钙/聚丙烯酰胺防粘连水凝胶的制备及性能
Preparation and Properties of Polydopamine Coated Modified Calcium Alginate/Polyacrylamide Anti-adhesive Hydrogel
摘要

预防宫腔粘连 (IUA) 术后再粘连主要采用薄膜和水凝胶材料作为防粘连屏障, 但目前临床上使用的材料由于粘附性不足及降解太快等问题, 疗效仍不理想。海藻酸钙/聚丙烯酰胺 (CA/PAM) 双网络水凝胶力学性能及生物相容性优异, 适宜作为防粘连材料, 但粘附性不足, 易发生移位。本文采用聚多巴胺 (PDA) 涂层修饰CA/PAM水凝胶, 制备得到PDA@CA/PAM水凝胶, 以改善其粘附性。SEM图像表明PDA涂层成功涂覆, 并且水凝胶具有良好的三维多孔网络结构。力学性能测试显示水凝胶具有优异的拉伸及压缩性能, 使其可顺利进入目标位置并且承受一定的压力; 搭接-剪切实验证明, PDA涂层的修饰使CA/PAM水凝胶的组织粘附性能明显提升; 溶胀及降解性能表明该水凝胶可以吸收创面渗液并且在创面保持一定的时间。PDA涂层的引入也使得水凝胶的亲水性有所提升。细胞毒性测试及溶血实验显示, 水凝胶的细胞活性均在80%以上, 溶血率均在5%以下。并且PDA@CA/PAM水凝胶显示出比CA/PAM更高的细胞相容性和血液相容性。

Abstract

Film and hydrogel materials are mainly used as anti-adhesion barriers to prevent intrauterine adhesions (IUA) after surgery, but the efficacy of materials currently used in clinical practice is still not satisfactory due to insufficient adhesion and rapid degradation. Calcium alginate/polyacrylamide (CA/PAM) double-network hydrogel has excellent mechanical properties and biocompatibility, which is suitable for anti- adhesion materials, but the adhesion is insufficient and easy to shift. In this paper, polydopamine (PDA) coating was used to modify the CA/PAM hydrogel, and PDA@CA/PAM hydrogel was prepared to improve its adhesion properties. The SEM images show that the PDA coating is successfully applied, and that the hydrogel has a good three-dimensional porous network structure. The mechanical property test showed that the hydrogel had excellent tensile and compressibility, which allowed it to enter the target location smoothly and withstand certain pressure. The lap-shear test demonstrated that the modification of PDA coating significantly improved the tissue adhesion properties of CA/PAM hydrogels. The swelling and degradation properties indicated that the hydrogel could absorb the wound exudate and keep it on the wound for a certain period of time. The introduction of PDA coating also improved the hydrophilicity of the hydrogel. Cytotoxicity tests and hemolysis experiments showed that the cell activity of hydrogel was above 80%, and the hemolysis rate was below 5%. Moreover, PDA@CA/PAM hydrogel showed higher cell compatibility and blood compatibility than that of CA/PAM.  

DOI10.48014/pcms.2022120202002
文章类型研究性论文
收稿日期2022-12-02
接收日期2022-12-12
出版日期2022-12-28
关键词防粘连, 水凝胶, 聚多巴胺, 海藻酸钠, 聚丙烯酰胺
KeywordsAnti-adhesion, hydrogel, polydopamine, sodium alginate, polyacrylamide
作者薛贝贝1, 王兆元2, 董旭峰1,*
AuthorXUE Beibei1, WANG Zhaoyuan2, DONG Xufeng1,*
所在单位1. 大连理工大学 材料科学与工程学院, 大连 116024
2. 首都医科大学附属北京友谊医院, 北京 100050
Company1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2. Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
浏览量537
下载量308
基金项目本项研究得到了中央高校基本科研业务费(资助号DUT22YG201)的资助。
参考文献[1] Yu D, Wong Y M, Cheong Y, et al. Asherman syndrome— one century later[J]. Fertility and Sterility, 2008, 89(4): 759-779.
https://doi.org/10.1016/j.fertnstert.2008.02.096
[2] Valle R F, Sciarra J J. Intrauterine adhesions: hysteroscopic diagnosis, classification, treatment, and reproductive outcome[J]. American Journal of Obstetrics and Gynecology, 1988, 158(6): 1459-1470.
https://doi.org/10.1016/0002-9378(88)90382-1
[3] Conforti A, Alviggi C, Mollo A, et al. The management of Asherman syndrome: a review of literature[J]. Reproductive Biology and Endocrinology, 2013, 11(1): 1-11.
https://doi.org/10.1186/1477-7827-11-118
[4] Sardo A D S, Calagna G, Scognamiglio M, et al. Prevention of intrauterine post-surgical adhesions in hysteroscopy. A systematic review[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2016, 203: 182-192.
https://doi.org/10.1016/j.ejogrb.2016.05.050
[5] Guo J, Li T C, Liu Y H, et al. A prospective, randomized, controlled trial comparing two doses of oestrogen therapy after hysteroscopic adhesiolysis to prevent intrauterine adhesion recurrence[J]. Reproductive Biomedicine Online, 2017, 35(5): 555-561.
https://doi.org/10.1016/j.rbmo.2017.07.011
[6] Deans R, Abbott J. Review of intrauterine adhesions[J]. Journal of Minimally Invasive Gynecology, 2010, 17(5): 555-569.
https://doi.org/10.1016/j.jmig.2010.04.016
[7] Xu W, Zhang Y, Yang Y, et al. Effect of early secondlook hysteroscopy on reproductive outcomes after hysteroscopic adhesiolysis in patients with intrauterine adhesion, a retrospective study in China[J]. International Journal of Surgery, 2018, 50: 49-54.
https://doi.org/10.1016/j.ijsu.2017.11.040
[8] Tonguc E A, Var T, Yilmaz N, et al. Intrauterine device or estrogen treatment after hysteroscopic uterine septum resection[J]. International Journal of Gynecology & Obstetrics, 2010, 109(3): 226-229.
https://doi.org/10.1016/j.ijgo.2009.12.015
[9] Zhang E, Song B, Shi Y, et al. Fouling-resistant zwitterionic polymers for complete prevention of postoperative adhesion[J]. Proceedings of the National Academy of Sciences, 2020, 117(50): 32046-32055.
https://doi.org/10.1073/pnas.2012491117
[10] Liu H, Xu Y, Yi N, et al. Efficacy and safety of hyaluronic acid gel for the prevention of intrauterine adhesion: a meta-analysis of randomized clinical trials[J]. Gynecologic and Obstetric Investigation, 2018, 83(3): 227-233.
https://doi.org/10.1159/000486674
[11] Mao X, Tao Y, Cai R, et al. Cross-linked hyaluronan gel to improve pregnancy rate of women patients with moderate to severe intrauterine adhesion treated with IVF: a randomized controlled trial[J]. Archives of Gynecology and Obstetrics, 2020, 301: 199-205.
https://doi.org/10.1007/s00404-019-05368-6
[12] Chandel A K S, Shimizu A, Hasegawa K, et al. Advancement of biomaterial-based postoperative adhesion barriers[J]. Macromolecular Bioscience, 2021, 21(3): 2000395.
https://doi.org/10.1002/mabi.202000395
[13] Reddy S, Santanam N, Reddy P P, et al. Interaction of Interceed oxidized regenerated cellulose with macrophages: a potential mechanism by which Interceed may prevent adhesions[J]. American journal of obstetrics and gynecology, 1997, 177(6): 1315-1321.
https://doi.org/10.1016/S0002-9378(97)70070-X
[14] Gibbs D M R, Black C R M, Dawson J I, et al. A review of hydrogel use in fracture healing and bone regeneration[ J]. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10(3): 187-198.
https://doi.org/10.1002/term.1968
[15] Zhang Y S, Khademhosseini A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627.
https://doi.org/10.1126/science.aaf3627
[16] Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications[J]. Biotechnology Advances, 2017, 35(5): 530-544.
https://doi.org/10.1016/j.biotechadv.2017.05.006
[17] Burdick J A, Murphy W L. Moving from static to dynamic complexity in hydrogel design[J]. Nature Communications, 2012, 3(1): 1269.
https://doi.org/10.1038/ncomms2271
[18] Seliktar D. Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012, 336(6085): 1124-1128.
https://doi.org/10.1126/science.1214804
[19] Sun J Y, Zhao X, Illeperuma W R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133-136.
https://doi.org/10.1038/nature11409
[20] Liu J, Pang Y, Zhang S, et al. Triggerable tough hydrogels for gastric resident dosage forms[J]. Nature Communications, 2017, 8(1): 124.
https://doi.org/10.1038/s41467-017-00144-z
[21] Yang H, Li C, Tang J, et al. Strong and degradable adhesion of hydrogels[J]. ACS Applied Bio Materials, 2019, 2(5): 1781-1786.
https://doi.org/10.1021/acsabm.9b00103
[22] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. science, 2007, 318(5849): 426-430.
https://doi.org/10.1126/science.1147241
[23] Sileika T S, Kim H D, Maniak P, et al. Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4602-4610.
https://doi.org/10.1021/am200978h
[24] Ding Y H, Floren M, Tan W. Mussel-inspired polydopamine for bio-surface functionalization[J]. Biosurface and Biotribology, 2016, 2(4): 121-136.
https://doi.org/10.1016/j.bsbt.2016.11.001
[25] Razavi M, Hu S, Thakor A S. A collagen based cryogel bioscaffold coated with nanostructured polydopamine as a platform for mesenchymal stem cell therapy[J]. Journal of Biomedical Materials Research Part A, 2018, 106(8): 2213-2228.
https://doi.org/10.1002/jbm.a.36428
[26] Wang J, Chen Y, Zhou G, et al. Polydopamine-coated Antheraea pernyi(A. pernyi)silk fibroin films promote cell adhesion and wound healing in skin tissue repair[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34736-34743.
https://doi.org/10.1021/acsami.9b12643
[27] Pacelli S, Paolicelli P, Petralito S, et al. Investigating the role of polydopamine to modulate stem cell adhesion and proliferation on gellan gum-based hydrogels[J]. ACS Applied Bio Materials, 2020, 3(2): 945-951.
https://doi.org/10.1021/acsabm.9b00989
[28] Michalicha A, Pałka K, Roguska A, et al. Polydopamine- coated curdlan hydrogel as a potential carrier of free amino group-containing molecules[J]. Carbohydrate Polymers, 2021, 256: 117524.
https://doi.org/10.1016/j.carbpol.2020.117524
[29] Jing X, Mi H Y, Napiwocki B N, et al. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering[J]. Carbon, 2017, 125: 557-570.
https://doi.org/10.1016/j.carbon.2017.09.071
[30] Xie Z, Li H, Mi H Y, et al. Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications[J]. Journal of Materials Chemistry C, 2021, 9(31): 10127-10137.
https://doi.org/10.1039/d1tc02599f
[31] Suneetha M, Rao K M, Han S S. Mussel-inspired cell/ tissue-adhesive, hemostatic hydrogels for tissue engineering applications[J]. ACS omega, 2019, 4(7): 12647-12656.
https://doi.org/10.1021/acsomega.9b01302
[32] Zhang L, Jiang Q, Zhao Y, et al. Strong and tough PAm/SA hydrogel with highly strain sensitivity[J]. Journal of Renewable Materials, 2022, 10(2): 415.
https://doi.org/10.32604/jrm.2022.016650
[33] Han L, Yan L, Wang K, et al. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality[J]. NPG Asia Materials, 2017, 9(4): e372-e372.
https://doi.org/10.1038/am.2017.33
[34] Xiao B, Yang W, Lei D, et al. PGS scaffolds promote the in vivo survival and directional differentiation of bone marrow mesenchymal stem cells restoring the morphology and function of wounded rat uterus[J]. Advanced Healthcare Materials, 2019, 8(5): 1801455.
https://doi.org/10.1002/adhm.201801455
[35] Lih E, Lee J S, Park K M, et al. Rapidly curable chitosan- PEG hydrogels as tissue adhesives for hemostasis and wound healing[J]. Acta Biomaterialia, 2012, 8(9): 3261-3269.
https://doi.org/10.1016/j.actbio.2012.05.001
[36] Li J, Suo Z, Vlassak J J. Stiff, strong, and tough hydrogels with good chemical stability[J]. Journal of Materials Chemistry B, 2014, 2(39): 6708-6713.
https://doi.org/10.1039/c4tb01194e
[37] Brigham M P, Stein W H, Moore S. The concentrations of cysteine and cystine in human blood plasma[J]. The Journal of Clinical Investigation, 1960, 39(11): 1633-1638.
https://doi.org/10.1172/JCI104186
[38] Cai N, Li Q, Zhang J, et al. Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent[J]. Journal of Colloid and Interface Science, 2017, 503: 168-177.
https://doi.org/10.1016/j.jcis.2017.04.024
[39] Deng X, Wang T, Zhao F, et al. Poly(ether sulfone)/ activated carbon hybrid beads for creatinine adsorption[J]. Journal of Applied Polymer Science, 2007, 103(2): 1085-1092.
https://doi.org/10.1002/app.25344
[40] Zhou C, Yi Z. Blood-compatibility of polyurethane/liquid crystal composite membranes[J]. Biomaterials, 1999, 20(22): 2093-2099.
https://doi.org/10.1016/S0142-9612(99)00080-0
引用本文薛贝贝, 王兆元, 董旭峰. 聚多巴胺涂层修饰海藻酸钙/聚丙烯酰胺防粘连水凝胶的制备及性能[J]. 中国材料科学进展, 2022, 1(3): 45-56.
CitationXUE Beibei, WANG Zhaoyuan, DONG Xufeng. Preparation and properties of polydopamine coated modified calcium alginate/polyacrylamide anti-adhesive hydrogel[J]. Progress in Chinese Materials Sciences, 2022, 1(3): 45-56.