2024年5月19日 星期日
用于可持续基础设施的高性能与多功能纳米氧化钛混凝土
High Performance and Multifunctional Nano Titanium Oxide Concrete for Sustainable Infrastructures
摘要

作为世界上使用量最大的人造材料, 混凝土建造了人类赖以生存的主要基础设施。但随着基础设施的规模化、复杂化以及应用领域的不断扩大, 传统混凝土材料性能单一且性能提升趋缓已不能满足某些特殊/恶劣环境对混凝土性能的要求。混凝土性能的充分挖掘或拓展 (比如高性能化、多功能化、结构-功能一体化) 已成为混凝土材料可持续发展的一个重要方向, 同时也是实现基础设施可持续发展的一个重要途径。纳米氧化钛填料优异的力学、电学、光学、磁学以及生物学本征性能可以改善混凝土的宏-细-微观性能, 应用其有望发展高性能 (包括高力学性能和高耐久性能) 以及多功能混凝土。本文系统介绍了纳米氧化钛复合混凝土的制备、微观结构、水化性能、流变性能、工作性能、力学性能、收缩性能、耐久性能、功能特性以及应用, 并讨论了纳米氧化钛复合混凝土后续发展面临的挑战和发展策略。

Abstract

As the most used man-made material in the world, concrete has built the main infrastructures on which human beings depend. However, with the increasing scale and complexity of infrastructures and the expansion of application areas, traditional concrete materials with single performance and slow performance improvement can no longer meet the requirements of concrete performance in certain special/harsh environments. The full exploitation or expansion of concrete properties (e. g. high performance, multifunctionality, structural-functional integration) has become an important direction for the sustainable development of concrete materials, and an important way to achieve sustainable infrastructure development. The excellent mechanical, electrical, optical, magnetic and biological intrinsic properties of nano titanium oxide particles can improve the macro-meso-microscopic properties of concrete, and its application is expected to develop high performance (including high mechanical properties and high durability) and multifunctional concrete. This paper systematically introduces the preparation, microstructure, hydration properties, rheological properties, workability, mechanical properties, shrinkage properties, durability, functional properties and applications of nano titanium oxide composite concrete, and discusses the challenges and development strategies for the subsequent development of nano titanium oxide composite concrete.  

DOI10.48014/ems.20230327001
文章类型综述
收稿日期2023-03-27
接收日期2023-04-20
出版日期2023-09-28
关键词混凝土, 纳米氧化钛, 力学性能, 耐久性能, 功能特性
KeywordsConcrete, nano titanium oxide, mechanical properties, durability properties, functional properties
作者李祯1,*, 孙梦月1, 刘志强2, 韩宝国3
AuthorLI Zhen1,*, SUN Mengyue1, LIU Zhiqiang2, HAN Baoguo3
所在单位1. 哈尔滨工程大学航天与建筑工程学院, 哈尔滨 150001
2. 中交公路规划设计院有限公司, 北京 100010
3. 大连理工大学土木工程学院, 大连 116024
Company1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
2. CCCC Highway Consultants CO. , Ltd. , Beijing 100010, China
3. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
浏览量695
下载量108
参考文献[1] 王欣悦, 丁思齐, 董素芬, 等. 混凝土可持续发展: 应对碳排放引起气候变化危机[J]. 工程材料与结构. 2022, 1(1): 1-14.
https://doi.org/10.48014/ems.20220728001
[2] De Larrard F. Concrete mixture proportioning: a scientific approach[M]. CRC Press, 1999.
https://doi.org/10.1201/9781482272055
[3] Han B, Sun S, Ding S, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 69-81.
https://doi.org/10.1016/j.compsitesa.2014.12.002
[4] Lee B Y. Effect of titanium dioxide nanoparticles on early age and long term properties of cementitious materials [M]. Georgia Institute of Technology, 2012.
[5] Lawrence P, Cyr M, Ringot E. Mineral admixtures in mortars: effect of inert materials on short-term hydration[ J]. Cement and Concrete Research, 2003, 33(12): 1939-1947.
https://doi.org/10.1016/S0008-8846(03)00183-2
[6] D'Alessandro A, Ubertini F, Laflamme S, et al. Towards smart concrete for smart cities: Recent results and future application of strain-sensing nanocomposites[J]. Journal of Smart Cities, 2015, 1(1): 1-12.
https://doi.org/10.18063/JSC.2015.01.002
[7] Zelic' J, Rušic' D, Veža D, et al. The role of silica fume in the kinetics and mechanisms during the early stage of cement hydration[J]. Cement and Concrete Research, 2000, 30(10): 1655-1662.
https://doi.org/10.1016/S0008-8846(00)00374-4
[8] Feynman R. There’s plenty of room at the bottom[M]. Feynman and Computation. CRC Press, 2018: 63-76.
[9] Ma P C, Siddiqui N A, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1345-1367.
https://doi.org/10.1016/j.compsitesa.2010.07.003
[10] Li L, Yang F, Ye G J, et al. Quantum Hall effect in black phosphorus two-dimensional electron system[J]. Nature Nanotechnology, 2016, 11(7): 593-597.
https://doi.org/10.1038/nnano.2016.42
[11] Colston S L, O'connor D, Barnes P, et al. Functional micro- concrete: The incorporation of zeolites and inorganic nano-particles into cement micro-structures[J]. Journal of Materials Science Letters, 2000, 19(12): 1085-1088.
https://doi.org/10.1023/A:1006767809807
[12] Rahim A, Nair S R. Influence of nano-materials in high strength concrete[J]. Journal of Chemical and Pharmaceutical Sciences, 2016, 974: 15-21.
[13] Salman M M, Eweed K M, Hameed A M. Influence of partial replacement TiO2 nanoparticles on the compressive and flexural strength of ordinary cement mortar [J]. Al-Nahrain Journal for Engineering Sciences, 2016, 19(2): 265-270.
[14] Shekari A H, Razzaghi M S. Influence of nano particles on durability and mechanical properties of high performance concrete[J]. Procedia Engineering, 2011, 14: 3036-3041.
https://doi.org/10.1016/j.proeng.2011.07.382
[15] Noorvand H, Ali AAA, Demirboga R, et al. Incorporation of nano TiO2 in black rice husk ash mortars[J]. Construction and Building Materials, 2013, 47: 1350-1361.
https://doi.org/10.1016/j.conbuildmat.2013.06.066
[16] Han B, Li Z, Zhang L, et al. Reactive powder concrete reinforced with nano SiO2-coated TiO2 [J]. Construction and Building Materials, 2017, 148: 104-112.
https://doi.org/10.1016/j.conbuildmat.2017.05.065
[17] Nazari A, Riahi S. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete[J]. Materials Science and Engineering: A, 2010, 528(2): 756-763.
https://doi.org/10.1016/j.msea.2010.09.074
[18] Yang L, Jia Z, Zhang Y, et al. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes[J]. Cement and Concrete Composites, 2015, 57: 1-7.
https://doi.org/10.1016/j.cemcocomp.2014.11.009
[19] Ma B, Li H, Mei J, et al. Effects of nano-TiO2 on the toughness and durability of cement-based material[J]. Advances in Materials Science and Engineering, 2015: 583106.
https://doi.org/10.1155/2015/583106
[20] Soleymani F. Assessments of the effects of limewater on water permeability of TiO2 nanoparticles binary blended palm oil clinker aggregate-based concrete[J]. Journal of American Science, 2012, 8(5): 698-702.
[21] Guerrini G L, Peccati E. Photocatalytic cementitious roads for depollution[C]. International RILEM Symposium on Photocatalysis, Environment and Construction Materials, 2007: 179-186.
[22] Demeestere K, Dewulf J, De Witte B, et al. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2[J]. Building and Environment, 2008, 43(4): 406-414.
https://doi.org/10.1016/j.buildenv.2007.01.016
[23] Li Z, Dong S, Ashour A, et al. On the incorporation of nano TiO2 to inhibit concrete deterioration in the marine environment[J]. Nanotechnology, 2022, 33(13): 135704.
https://doi.org/10.1088/1361-6528/ac3f55
[24] 熊国宣. 水泥基复合吸波材料[D]. 南京: 南京工业大学, 2005.
https://doi.org/10.7666/d.w014742
[25] Han B, Yu X, Ou J. Self-sensing concrete in smart structures[M]. Butterworth-Heinemann, 2014.
https://doi.org/10.1016/B978-0-12-800517-0.00001-0
[26] 富永祥, 林广义, 汪传生. 超声分散制备环氧树脂/纳米SiO2复合材料研究[J]. 工程塑料应用, 2009, 37(05): 5-8.
https://doi.org/10.3969/j.issn.1001-3539.2009.05.002
[27] Li Z, Han B, Yu X, et al. Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete[J]. Materials Research Express, 2017, 4(9): 095008.
https://doi.org/10.1088/2053-1591/aa87db
[28] Lee B Y, Jayapalan A R, Kurtis K E. Effects of nano- TiO2 on properties of cement-based materials[J]. Magazine of Concrete Research, 2013, 65(21): 1293-1302.
https://doi.org/
doi:10.1680/macr.13.00131
[29] Mohseni E, Mehrinejad M, Azar H, et al. Effectiveness of nano-TiO2 and fly ash in concrete[J]. Tech. J. Eng. Appl. Sci, 2015, 5: 101-107.
[30] Chen J, Kou S, Poon C. Hydration and properties of nano-TiO2 blended cement composites[J]. Cement and Concrete Composites, 2012, 34(5): 642-649.
https://doi.org/10.1016/j.cemconcomp.2012.02.009
[31] Salemi N, Behfarnia K, Zaree S. Effect of nanoparticles on frost durability of concrete[J]. Asian Journal of Civil Engineering, 2014: 411-420.
[32] Zhang R, Cheng X, Hou P, et al. Influences of nano- TiO2 on the properties of cement-based materials: Hydration and drying shrinkage[J]. Construction and Building Materials, 2015, 81: 35-41.
https://doi.org/10.1016/j.conbuildmat.2015.02.003
[33] Mohseni E, Naseri F, Amjadi R, et al. Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash[J]. Construction and Building Materials, 2016, 114: 656-664.
https://doi.org/10.1016/j.conbuildmat.2016.03.13
[34] Feng L C, Gong C W, Wu Y P, et al. The study on mechanical properties and microstructure of cement paste with nano-TiO2 [C]. Advanced Materials Research, 2013: 477-481.
https://doi.org/10.4028/www.scientific.net/AMR.629.477
[35] Behfarnia K, Azarkeivan A, Keivan A. The effects of TiO2 and ZnO nanoparticles on physical and mechanical properties of normal concrete[J]. Asian Journal of Civil Engineering, , 2013: 517-531.
[36] Kurihara R, Maruyama I. Influences of nano-TiO2 particles on alteration of microstructure of hardened cement[ J]. Technical Paper, 2016, 38: 219-224.
[37] Gartner E M, Jennings H M. Thermodynamics of calcium silicate hydrates and their solutions[J]. Journal of the American Ceramic Society, 1987, 70(10): 743-749.
https://10.1111/j.1151-2916.1987.tb04874.x
[38] Damidot D, Nonat A. C3S hydration in diluted and stirred suspensions:(I)study of the two kinetic steps[J]. Advances in Cement Research, 1994, 6(21): 27-35.
https://doi.org/10.1680/adcr.1994.6.21.27
[39] Barret P, Bertrandie D. Fundamental hydration kinetic features of the major cement constituents: Ca3SiO5 and βCa2SiO4[J]. Journal De Chimie Physique, 1986, 83: 765-775.
https://doi.org/10.1051/jcp/1986830765
[40] Wang J, Han B, Li Z, et al. Effect investigation of nanofillers on CSH gel structure with Si NMR[J]. Journal of Materials in Civil Engineering, 2019, 31(1): 04018352.
https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0002559
[41] Han B, Zhang L, Zeng S, et al. Nano-core effect in nanoengineered cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 100-109.
https://doi.org/10.1016/j.compositesa.2017.01.008
[42] Collins F, Sanjayan J G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1401-1406.
https://doi.org/10.1016/S0008-8846(00)00327-6
[43] Fawzy Y. Effect of nano-titanium on properties of concrete made with various cement types[J]. American Journal of Science, 2016, 12(4): 116-126.
[44] Wang J, Dong S, Zhou C, et al. Investigating pore structure of nano-engineered concrete with low-field nuclear magnetic resonance[J]. Journal of Materials Science, 2021, 56: 243-259.
https://doi.org/10.1007/s10853-020-05268-0
[45] Jayapalan A, Lee B, Kurtis K. Effect of nano-sized titanium dioxide on early age hydration of Portland cement, Nanotechnology in construction 3: Springer, 2009: 267-273.
https://doi.org/10.1007/978-3-642-00980-8_35
[46] Li N, Wang W, Ye J, et al. Short age direct shear behavior of seashore soft soil reinforced by cement and nanotitanium dioxide[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(3): 1087-1093.
[47] Liu J, Li Q, Xu S. Influence of nanoparticles on fluidity and mechanical properties of cement mortar[J]. Construction and Building Materials, 2015, 101: 892-901.
https://doi.org/10.1016/j.conbuildmat.2015.10.149
[48] Zhao S, Sun W. Nano-mechanical behavior of a green ultra-high performance concrete[J]. Construction and Building Materials, 2014, 63: 150-160.
https://doi.org/10.1016/j.conbuildmat.2014.04.029
[49] Folli A, Pochard I, Nonat A, et al. Engineering photocatalytic cements: understanding TiO2 surface chemistry to control and modulate photocatalytic performances[ J]. Journal of the American Ceramic Society, 2010, 93(10): 3360-3369.
https://doi.org/10.1111/j.1551-2916.2010.03838.x
[50] Lothenbach B, Scrivener K, Hooton R. Supplementary cementitious materials[J]. Cement and Concrete Research, 2011, 41(12): 1244-1256.
https://doi.org/10.1016/j.cemconres.2010.12.001
[51] Hubler M H, Thomas J J, Jennings H M. Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste[J]. Cement and Concrete Research, 2011, 41(8): 842-846.
https://doi.org/10.1016/j.cemconres.2011.04.002
[52] Jiang S, Shan B, Ouyang J, et al. Rheological properties of cementitious composites with nano/fiber fillers[J]. Construction and Building Materials, 2018, 158: 786-800.
https://doi.org/10.1016/j.conbuildmat.2017.10.072
[53] Senff L, Hotza D, Lucas S, et al. Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars[J]. Materials Science and Engineering: A, 2012, 532: 354-361.
https://doi.org/10.1016/j.msea.2011.10.102
[54] Talero R, Pedrajas C, González M, et al. Role of the filler on Portland cement hydration at very early ages: Rheological behaviour of their fresh cement pastes[J]. Construction and building Materials, 2017, 151: 939-949.
https://doi.org/10.1016/j.conbuildmat.2017.06.006
[55] Varhen C, Dilonardo I, de Oliveira Romano, et al. Effect of the substitution of cement by limestone filler on the rheological behaviour and shrinkage of microconcretes[J]. Construction and Building Materials, 2016, 125: 375-386.
https://doi.org/10.1016/j.conbuildmat.2016.08.062
[56] Gunnelius K R, Lundin T C, Rosenholm J B, et al. Rheological characterization of cement pastes with functional filler particles[J]. Cement and Concrete Research, 2014, 65: 1-7.
https://doi.org/10.1016/j.cemconres.2014.06.010
[57] Li H, Ding S, Zhang L, et al. Effects of particle size, crystal phase and surface treatment of nano-TiO2 on the rheological parameters of cement paste[J]. Construction and Building Materials, 2020, 239: 117897.
https://doi.org/10.1016/j.conbuildmat.2019.117897
[58] Zapata L, Portela G, Suárez O, et al. Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO2 additions[J]. Construction and Building Materials, 2013, 41: 708-716.
https://doi.org/10.1016/j.conbuildmat.2012.12.025
[59] Mukharjee B B, Barai S V. Influence of nano-silica on the properties of recycled aggregate concrete[J]. Construction and Building Materials, 2014, 55: 29-37.
https://doi.org/10.1016/j.conbuildmat.2014.01.003
[60] Meng T, Yu Y, Qian X, et al. Effect of nano-TiO2 on the mechanical properties of cement mortar[J]. Construction and Building Materials, 2012, 29: 241-245.
https://doi.org/10.1016/j.conbuildmat.2011.10.047
[61] Liu Q, Jiang Q, Huang M, et al. The fresh and hardened properties of 3D printing cement-base materials with self-cleaning nano-TiO2: An exploratory study[J]. Journal of Cleaner Production, 2022, 379: 134804.
https://doi.org/10.1016/j.jclepro.2022.134804
[62] 张茂花. 纳米路面混凝土的全寿命性能[D]. 哈尔滨: 哈尔滨工业大学, 2007.
https://doi.org/10.7666/d.D271875
[63] Birgisson B, Mukhopadhyay A K, Geary G, et al. Nanotechnology in concrete materials: a synopsis[J]. Transportation Research Circular, 2012(E-C170).
[64] Mohseni E, Miyandehi B M, Yang J, et al. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of selfcompacting mortar containing fly ash[J]. Construction and Building Materials, 2015, 84: 331-340.
https://doi.org/10.1016/j.conbuildmat.2015.03.006
[65] Sanchez F, Sobolev K. Nanotechnology in concrete-a review[ J]. Construction and Building Materials, 2010, 24(11): 2060-2071.
https://doi.org/10.1016/j.conbuildmat.2010.03.014
[66] Nazari A, Riahi S, Riahi S, et al. Improvement the mechanical properties of the cementitious composite by using TiO2 nanoparticles[J]. Journal of American Science, 2010, 6(4): 98-101.
[67] Han B, Wang Y, Dong S, et al. Smart concretes and structures: A review[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(11): 1303-1345.
https://doi.org/10.1177/1045389x15586452
[68] Jiang S, Zhou D, Zhang L, et al. Comparison of compressive strength and electrical resistivity of cementitious composites with different nano-and micro-fillers[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 60-68.
https://doi.org/10.1016/j.acme.2017.05.010
[69] Wang J, Dong S, Wang D, et al. Enhanced impact properties of concrete modified with nanofiller inclusions[J]. Journal of Materials in Civil Engineering, 2019, 31(5): 04019030.
https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0002659
[70] Li L, Zheng Q, Wang X, et al. Modifying fatigue performance of reactive powder concrete through adding pozzolanic nanofillers[J]. International Journal of Fatigue, 2022, 156: 106681.
https://doi.org/10.1016/j.ijfatigue.2021.106681
[71] Aly T, Sanjayan J G. Mechanism of early age shrinkage of concretes[J]. Materials and Structures, 2009, 42(4): 461-468.
https://doi.org/10.1617/s11527-008-9394-6
[72] Palacios M, Puertas F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes[J]. Cement and Concrete Research, 2007, 37(5): 691-702.
https://doi.org/10.1016/j.cemconres.2006.11.021
[73] Hasebe M, Edahiro H. Experimental studies on strength, durability and antifouling properties of concrete using TiO2 as admixture[J]. Cement Science and Concrete Technology, 2013, 67(1): 507-513.
https://doi.org/10.14250/cement.67.507
[74] Collins F, Sanjayan J G. Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate[J]. Cement and Concrete Research, 1999, 29(4): 607-610.
https://doi.org/10.1016/S0008-8846(98)00203-8
[75] 杨文萃. 无机盐对混凝土孔结构和抗冻性影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
https://doi.org/10.7666/d.D257682
[76] Bui D, Hu J, Stroeven P. Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete[J]. Cement and Concrete Composites, 2005, 27(3): 357-366.
https://doi.org/10.1016/j.cemconcomp.2004.05.002
[77] Naganna S R, Jayakesh K, Anand V. Nano-TiO2 particles: a photocatalytic admixture to amp up the performance efficiency of cementitious composites[J]. Sādhanā, 2020, 45(1): 1-13.
https://doi.org/10.1007/s12046-020-01515-x
[78] Tattersall G, Baker P. An investigation on the effect of vibration on the workability of fresh concrete using a vertical pipe apparatus[J]. Magazine of Concrete Research, 1989, 41(146): 3-9.
https://doi.org/10.1680/macr.1989.41.146.3
[79] Wee T, Suryavanshi A K, Tin S. Evaluation of rapid chloride permeability test(RCPT)results for concrete containing mineral admixtures[J]. Materials Journal, 2000, 97(2): 221-232.
https://doi.org/10.1016/S0886-7798(00)00048-1
[80] Nochaiya T, Chaipanich A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials[J]. Applied Surface Science, 2011, 257(6): 1941-1945.
https://doi.org/10.1016/j.apsusc.2010.09.030
[81] Standard specification for compressive strength of mortars. ASTM C-1202. 2007.
[82] Zhang L, Ding S, Sun S, et al. Nano-scale behavior and nano-modification of cement and concrete materials, Advanced research on nanotechnology for civil engineering applications[M]. 2016: 28-79.
https://doi.org/10.4018/978-1-5225-0344-6.ch002
[83] Wang D, Zhang W, Ruan Y, et al. Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete[ J]. Construction and Building Materials, 2018, 189: 487-497.
https://doi.org/10.1016/j.conbuildmat.2018.09.041
[84] He X, Shi X. Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials[ J]. Transportation Research Record, 2008, 2070(1): 13-21.
https://doi.org/10.3141/2070-03
[85] Feng D, Xie N, Gong C, et al. Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective[ J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11575-11582.
https://doi.org/10.1021/ie4011595
[86] 陈波, 王伟鱼, 丰雨秋, 等. 蒸养条件下矿粉、粉煤灰对高铁相硅酸盐水泥基材料毛细孔和抗侵蚀性能的影响[J]. 硅酸盐通报, 2023, 42(01): 162-169.
https://www.doi.org/10.16552/j.cnki.issn1001-1625.2023.01.005
[87] Daniyal M, Akhtar S, Azam A. Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments[J]. Journal of Materials Research and Technology, 2019, 8(6): 6158-6172.
https://doi.org/10.1016/j.jmrt.2019.10.010
[88] Han B, Zhang L, Ou J. Smart and multifunctional concrete toward sustainable infrastructures[M]. Springer, 2017.
https://doi.org/10.1007/978-981-10-4349-9
[89] Guo M Z, Ling T C, Poon C S. Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: Influence of coating and weathering conditions[J]. Cement and Concrete Composites, 2013, 36: 101-108.
https://doi.org/10.1016/j.cemconcomp.2012.08.006
[90] Fujishima A, Zhang X. Titanium dioxide photocatalysis: present situation and future approaches[J]. Comptes Rendus Chimie, 2006, 9(5-6): 750-760.
https://doi.org/10.1016/j.crci.2005.02.055
[91] Tung W S, Daoud W A. Self-cleaning fibers via nanotechnology: a virtual reality[J]. Journal of Materials Chemistry, 2011, 21(22): 7858-7869.
https://doi.org/10.1039/c0jm03856c
[92] Liu B, Wu H, Parkin I P. New insights into the fundamental principle of semiconductor photocatalysis[J]. ACS Omega, 2020, 5(24): 14847-14856.
https://doi.org/10.1021/acsomega.0c02145
[93] Shen S, Burton M, Jobson B, et al. Pervious concrete with titanium dioxide as a photocatalyst compound for a greener urban road environment[J]. Construction and Building Materials, 2012, 35: 874-883.
https://doi.org/10.1016/j.conbuildmat.2012.04.097
[94] Senff L, Ascensao G, Hotza D, et al. Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars [J]. Energy and Buildings, 2016, 127: 980-990.
https://doi.org/10.1016/j.enbuild.2016.06.048
[95] Chen J, Poon C S. Photocatalytic construction and building materials: from fundamentals to applications[J]. Building and Environment, 2009, 44(9): 1899-1906.
https://doi.org/10.1016/j.buildenv.2009.01.002
[96] Guo M Z, Maury-Ramirez A, Poon C S. Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application[J]. Journal of Cleaner Production, 2016, 112: 3583-3588.
https://doi.org/10.1016/j.jclepro.2015.10.079
[97] Kamitani K, Murata Y, Tawara H, et al. Air purifying pavement: development of photocatalytic concrete blocks[C]. International Symposium on Cement and Concrete, 1998: 751-755.
[98] Hunger M, Brouwers H, Ballari M D L M. Photocatalytic degradation ability of cementitious materials: A modeling approach[C]. Proceedings of 1st International Conference on Microstructure related Durability of Cementitious Composites, Nanjing, China, 2008.
[99] Poon C S, Cheung E. NO removal efficiency of photocatalytic paving blocks prepared with recycled materials[J]. Construction and Building Materials, 2007, 21(8): 1746-1753.
https://doi.org/10.1016/j.conbuildmat.2006.05.018
[100] Hu C, Lan Y, Qu J, et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria[J]. Journal of Physical Chemistry B, 2006, 110(9): 4066-4072.
https://doi.org/10.1021/jp0564400
[101] Boonen E, Beeldens A. Recent photocatalytic applications for air purification in Belgium [J]. Coatings, 2014, 4(3): 553-573.
https://doi.org/10.3390/coatings4030553
[102] Linkous C A, Carter G J, Locuson D B, et al. Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalyst modifications[J]. Environmental Science & Technology, 2000, 34(22): 4754-4758.
https://doi.org/10.1021/es001080+
[103] Wang R, Sakai N, Fujishima A, et al. Studies of surface wettability conversion on TiO2 single-crystal surfaces[ J]. Journal of Physical Chemistry B, 1999, 103(12): 2188-2194.
https://doi.org/10.1021/jp983386x
[104] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431-432.
https://doi.org/10.1038/41233
[105] Yu C M. Deactivation and regeneration of environmentally exposed titanium dioxide(TiO2)based products [M]. Department of Chemistry, Chinese University of Hong Kong, 2003.
[106] Guo M Z, Poon C S. An effective way to incorporate nano-TiO2 in photocatalytic cementitious materials[J]. The Third International Conference Sustainable Construction Materials and Technologies, 1-10. 2013.
https://doi.org/10.13140/2.1.1825.4728
[107] Lackhoff M, Prieto X, Nestle N, et al. Photocatalytic activity of semiconductor-modified cement—influence of semiconductor type and cement ageing[J]. Applied Catalysis B: Environmental, 2003, 43(3): 205-216.
https://doi.org/10.1016/s0926-3373(02)00303-x
[108] Macphee D, Folli A. Photocatalytic concretes—The interface between photocatalysis and cement chemistry[J]. Cement and Concrete Research, 2016, 85: 48-54.
https://doi.org/10.1016/j.cemconres.2016.03.007
[109] O'regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
https://doi.org/10.1038/353737a0
[110] 熊国宣, 邓敏, 徐玲玲, 等. 掺纳米TiO2的水泥基复合材料的性能[J]. 硅酸盐学报, 2006, 34(9): 1158-1161.
https://doi.org/10.3321/j.issn:0454-5648.2006.09.028
[111] Han B, Ding S, Yu X. Intrinsic self-sensing concrete and structures: A review[J]. Measurement, 2015, 59: 110-128.
https://doi.org/10.1016/j.measurement.2014.09.048
[112] Choi I, Lee D. Radar absorbing composite structures dispersed with nano-conductive particles[J]. Composite Structures, 2015, 122: 23-30.
https://doi.org/10.1016/j.compstruct.2014.11.040
[113] Qiu J, Lan L, Zhang H, et al. Effect of titanium dioxide on microwave absorption properties of barium ferrite[J]. Journal of Alloys and Compounds, 2008, 453(1- 2): 261-264.
https://doi.org/10.1016/j.jallcom.2006.11.059
[114] 平兵. 吸波功能集料混凝土的制备与性能研究[D]. 武汉: 武汉理工大学, 2015.
https://doi.org/10.7666/d.D794703
[115] Lu L, He Y, Ping B, et al. TiO2 containing electromagnetic wave absorbing aggregate and its application in concrete[J]. Construction and Building Materials, 2017, 134: 602-609.
https://doi.org/10.1016/j.conbuildmat.2016.12.153
[116] Li Z, Dong S, Wang X, et al. Electromagnetic wave-absorbing property and mechanism of cementitious composites with different types of nano titanium dioxide[J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020073.
https://doi.org/10.1061/(asce)mt.1943-5533.0003133
[117] Xiao H. Piezoresistivity of cement-based composite filled with nanophase materials and self-sensing smart structural system[J]. Harbin Institute of Technology, 2006.
[118] Wang J, Ding S, Han B, et al. Self-healing properties of reactive powder concrete with nanofillers[J]. Smart Materials and Structures, 2018, 27(11): 115033.
https://doi.org/10.1088/1361-665X/aae59f
[119] 中华人民共和国国家标准GB25577-2010. 食品添加剂二氧化钛[S].
[120] 贺飞, 唐怀军, 赵文宽, 等. 纳米TiO2光催化剂负载技术研究[J]. 环境污染治理技术与设备, 2001, 02: 47-58.
[121] Mathur A, Bhuvaneshwari M, Babu S, et al. The effect of TiO2 nanoparticles on sulfate-reducing bacteria and their consortium under anaerobic conditions[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3741-3748.
https://doi.org/10.1016/j.jece.2017.07.032
[122] 陈惜燕, 王利国, 李玲, 等. 纳米材料二氧化钛对胶孢炭疽菌的抑制作用[J]. 中国生物防治, 2005, 04: 63-66.
https://doi.org/10.3321/j.issn:1005-9261.2005.04.014
[123] Kim S, An Y. Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis[J]. Applied Microbiology Biotechnology, 2012, 95(1): 243-253. 10.
https://doi.org/1007/s00253-012-4153-6
[124] Kangwansupamonkon W, Lauruengtana V, Surassmo S, et al. Antibacterial effect of apatite-coated titanium dioxide for textiles applications[J]. Nanomedicine, 2009, 5(2): 240-249.
https://doi.org/10.1016/j.nano.2008.09.004
[125] Gupta K, Singh R, Pandey A, et al. Photocatalytic antibacterial performance of TiO2 and ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli[J]. Beilstein Journal of Nanotechnology, 2013, 4(1): 345-351.
https://doi.org/10.3762/bjnano.4.40
[126] Babaei E, Dehnad A, Hajizadeh N, et al. A study on inhibitory effects of titanium dioxide nanoparticles and its photocatalytic type on Staphylococcus aureus, Escherichia coli and Aspergillus flavus[J]. Applied Food Biotechnology, 2016, 3: 115-123.
[127] Adams L, Lyon D, Alvarez P. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19): 3527-3532.
https://doi.org/10.1016/j.watres.2006.08.004
[128] Maness P, Smolinski S, Blake D, et al. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism[J]. Applied and Environmental Microbiology, 1999, 65(9): 4094-4098.
https://doi.org/10.1128/AEM.65.9.4094-4098.1999
[129] Li H, Qiang C, Feng B, et al. Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition[J]. Applied Surface Science, 2013, 284(11): 179-183.
https://doi.org/10.1016/j.apsusc.2013.07.076
[130] Szczawinski J, Tomaszewski H, Jackowska-Tracz A, et al. Effect of UV radiation on survival of salmonella enteritidis on the surface of ceramic tiles coated with TiO2[J]. Bulletin-Veterinary Institute in Pulawy, 2010, 54(4): 479-483.
[131] Ibáñeza J, Litter M, Pizarro R. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: Comparative study with other Gram(-)bacteria[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 81-85.
https://doi.org/10.1016/S1010-6030(03)00074-1
[132] Venieri D, Fraggedaki A, Kostadima M, et al. Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance[J]. Applied Catalysis B: Environmental, 2014, 154-155: 93-101.
https://doi.org/10.1016/j.apcatb.2014.02.007
[133] Tong T, Sheree A, Wu J, et al. Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria[ J]. Environmental Science and Technology, 2013, 47(21): 12486-12495.
https://doi.org/10.1021/es403079h
[134] Gajjar P, Pettee B, Britt D, et al. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440[J]. Journal of Biological Engineering, 2009, 3(1): 1-13.
https://doi.org/10.1186/1754-1611-3-9
[135] Maury-Ramirez A, De Muynck W, Stevens R, et al. Titanium dioxide based strategies to prevent algal fouling on cementitious materials[J]. Cement and Concrete Composites, 2013, 36: 93-100.
https://doi.org/10.1016/j.cemc-comp.2012.08.030
[136] Hu C, Guo J, Qu J, et al. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation[J]. Langmuir, 2007, 23: 4982-4987.
https://doi.org/10.1016/j.cemconcomp.2012.08.030
[137] Liou J, Chang H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria[J]. Archivum Immunologiae et Therapiae Experimentalis, 2012, 60(4): 267-275.
https://doi.org/10.1007/s00005-012-0178-x
[138] Mathur A, Bhuvaneshwari M, Babu S, et al. The effect of TiO2 nanoparticles on sulfate-reducing bacteria and their consortium under anaerobic conditions[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3741-3748.
https://doi.org/10.1016/j.jece.2017.07.032
[139] Kirthika S K, Goel G, Matthews A, et al. Review of the untapped potentials of antimicrobial materials in the construction sector[J]. Progress in Materials Science, 2022: 101065.
https://doi.org/10.1016/j.pmatsci.2022.101065
[140] Vishwakarma V, Sudha U, Ramachandran D, et al. Enhancing antimicrobial properties of fly ash mortars specimens through nanophase modification[J]. Materials Today: Proceedings, 2016, 3(6): 1389-1397.
https://doi.org/10.1016/j.matpr.2016.04.020.L
[141] Li Z, Ding S, Kong L, et al. Nano TiO2-engineered anti- corrosion concrete for sewage system[J]. Journal of Cleaner Production, 2022, 337: 130508.
https://doi.org/10.1016/j.jclepro.2022.130508
[142] Jędrzejczak P, Ławniczak Ł, S'losarczyk A, et al. Physicomechanical and antimicrobial characteristics of cement composites with selected nano-sized oxides and binary oxide systems[J]. Materials, 2022, 15(2): 661.
https://doi.org/10.3390/ma15020661
[143] Praveenkumar T R, Vijayalakshmi M M, Meddah M S. Strengths and durability performances of blended cement concrete with TiO2 nanoparticles and rice husk ash[J]. Construction and Building Materials, 2019, 217: 343-351.
https://doi.org/10.1016/j.conbuildmat.2019.05.045
[144] Li Q, Mahendra S, Lyon D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications[J]. Water Research, 2008, 42(18): 4591-4602.
https://doi.org/10.1016/j.watres.2008.08.015
[145] Jenkins J, Mantell J, Neal C, et al. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress[J]. Nature Communications, 2020, 11: 1626.
https://wwwnature.53yu.com/articles/s41467-020-15471-x
[146] Olivi M, Zanni E, Bellis G, et al. Inhibition of microbial growth by carbon nanotube networks[J]. Nanoscale, 2013, 5: 9023-9029.
[147] Seil J, Webster T. Antimicrobial applications of nanotechnology: Methods and literature[J]. International Journal of Nanomedicine, 2012, 7: 2767-2781.
https://doi.org/10.2147/IJN.S24805
[148] Nowlin K, Boseman A, Covell A, et al. Adhesion-dependent rupturing of saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces[J]. Journal of the Royal Society Interface, 2015, 12: 1-12.
https://doi.org/10.1098/rsif.2014.0999
[149] Bandara C, Singh S, Afara I, et al. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli[J]. ACS Applied Materials and Interfaces, 2017, 9(8): 6746-6760.
https://doi.org/10.1021/acsami.6b13666
[150] Noeiaghaei T, Mukherjee A, Dhami N, et al. Biogenic deterioration of concrete and its mitigation technologies[ J]. Construction and Building Materials, 2017, 149: 575-586.
https://doi.org/10.1016/j.conbuildmat.2017.05.144
[151] Batchelor-McAuley C, Tschulik K, Neumann C, et al. Why are silver nanoparticles more toxic than bulk sil- ver? Towards understanding the dissolution and toxicity of silver nanoparticles[J]. International Journal of Electrochemical Science, 2014, 9(3): 1132-1138.
[152] Gammampila R, Mendis P, Ngo T, et al. Application of nanomaterials in the sustainable built environment[J]. International Conference on Sustainable Built Environment(ICSBE-2010)Kandy, 13-14 December 2010.
http://dl.lib.mrt.ac.lk/handle/123/9238
[153] Cassar L. Photocatalysis of cementitious materials: clean buildings and clean air[J]. Mrs Bulletin, 2004, 29(5): 328-331.
https://doi.org/10.1557/mrs2004.99
[154] Irie H, Sunada K, Hashimoto K. Recent developments in TiO2 photocatalysis: novel applications to interior ecology materials and energy saving systems[J]. Electrochemistry, 2004, 72(12): 807-812.
https://doi.org/10.5796/electrochemistry.72.807
[155] He J, Hoyano A. A numerical simulation method for analyzing the thermal improvement effect of super-hydrophilic photocatalyst-coated building surfaces with water film on the urban/built environment[J]. Energy and Buildings, 2008, 40(6): 968-978.
https://doi.org/10.1016/j.enbuild.2007.08.003
[156] Ohko Y, Tryk D A, Hashimoto K, et al. Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination[J]. Journal of Physical Chemistry B, 1998, 102(15): 2699-2704.
https://doi.org/10.1021/jp9732524
[157] Maggos T, Plassais A, Bartzis J, et al. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels[J]. Environmental Monitoring and Assessment, 2008, 136(1): 35-44.
https://doi.org/10.1007/s10661-007-9722-2
[158] Ding S, Wang J, Dong S, et al. Developing multifunctional/ smart civil engineering materials to fight viruses[ J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 678-690.
https://doi.org/10.1021/acssuschemeng.1c07642
[159] Qiu L, Dong S, Ashour A, et al. Antimicrobial concrete for smart and durable infrastructures: A review[J]. Construction and Building Materials, 2020, 260: 120456.
https://doi.org/10.1016/j.conbuildmat.2020.120456
[160] Kong L, Zhang B, Fang J. Effect of bactericide on the deterioration of concrete against sewage[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018160.
https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0002358
引用本文李祯, 孙梦月, 刘志强, 等. 用于可持续基础设施的高性能与多功能纳米氧化钛混凝土[J]. 工程材料与结构, 2023, 2(3): 30-63.
CitationLI Zhen, SUN Mengyue, LIU Zhiqiang, et al. High performance and multifunctional nano titanium oxide concrete for sustainable infrastructures[J]. Engineering Materials and Structures, 2023, 2(3): 30-63.