2024年7月21日 星期日
磨料水射流抛光工具腔室结构优化设计及喷嘴孔径研究
Study on Chamber Structure Optimization and Nozzle Aperture of Fluid Jet Polishing Tool
摘要

射流抛光工具的设计是水射流抛光工艺中重要的环节。本文通过研究不同工具腔室对射流流速和射流动压力的影响, 确定了最优的抛光工具类型, 并相应给出了最优设计方法。通过建立射流抛光离散相模型和冲蚀模型仿真和实验, 研究了不同孔径下抛光的去除率和去除函数形状。研究表明:在进行流体工具结构设计时, 应该尽量使腔室的直径大、长度短, 同时要保证流体运动的方向与喷嘴出射的方向相一致, 可以提升流束的质量。随着喷嘴孔径的减小, 去除率升高, M形去除函数中心低去除区域占比降低, 在实验条件下, 当孔径低于0. 25mm时, 可以得到高斯型去除函数。本文对实际射流抛光工具结构设计提供了参考价值。 

Abstract

The design of fluid jet polishing (FJP) tool is an important part of the FJP process. By studying effects of different tool chambers on flow-beam velocity and pressure, the paper determines the optimal type of polishing tool and provides the optimal design method. It studies those removal rates and shapes of removal function under different apertures by establishing FJP discrete phase model and flushing erosion model for simulation and experiment. The results show that in structure, the chamber shall be designed to be larger in diameter and shorter in length, and ensure the fluid movement direction is consistent with the nozzle discharge direction, so as to improve the quality of the flow beam. As the decrease of nozzle aperture, the removal rate increases and the proportion of low removal area in the center of M-shaped removal function decreases. Under experimental conditions, the Gaussian removal function can be obtained when the aperture is smaller than 0. 25mm. This paper provides a reference for the real design of jet polishing tool structure.  

DOI10.48014/fcmet.20220405001
文章类型研究性论文
收稿日期2022-04-08
接收日期2022-06-29
出版日期2022-09-28
关键词射流抛光, 工具结构, 冲蚀, 喷嘴设计, 去除函数
KeywordsFluid jet polishing, tool structure, flushing erosion, nozzle design, removal function
作者王彪, 王振忠*, 付振峰, 黄雪鹏
AuthorWANG Biao, WANG Zhenzhong*, FU Zhenfeng, HUANG Xuepeng
所在单位厦门大学机电工程系智能制造与精密工程实验室, 厦门 361005
CompanyIntelligent Manufacturing and Precision Engineering Laboratory, Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China
浏览量894
下载量324
参考文献[1] Shi C, Peng Y, Hou L, et al. Micro-analysis model for material removal mechanisms of bonnet polishing[J]. Applied Optics, 2018, 57(11): 2861-2872.
https://dx.doi.org/10.1364/AO.57.002861
[2] Shi C, Peng Y, Hou L, et al. Improved analysis model for material removal mechanisms of bonnet polishing incorporating the pad wear effect[J]. Applied Optics, 2018, 57(25): 7172-7186.
https://dx.doi.org/10.1364/AO.57.007172
[3] Peng W, Guan C, Li S . Material removal mode affected by the particle size in fluid jet polishing[J]. Applied Optics, 2013, 52(33): 7927-7933.
https://dx.doi.org/10.1364/AO.52.007927
[4] Sun T, Long S, Jin Y, et al. Research on the fluid jet pol-ishing in advanced optical fabrication[C] // 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. International Society for Optics and Photonics, 2014.
https://dx.doi.org/10.1117/12.2069715
[5] Wang C J, Cheung C F, Ho L T, et al. A novel multi-jet polishing process and tool for high-efficiency polishing[J]. International Journal of Machine Tools and Manufacture, 2017, 115.
https://dx.doi.org/10.1016/j.ijmachtools.2016.12.006
[6] Zhao J, Huang J, Wang R, et al. Investigation of the optimal parameters for the surface finish of K9 optical glass using a soft abrasive rotary flow polishing process[J]. Journal of Manufacturing Processes, 2020, 49: 26-34.
https://dx.doi.org/10.1016/j.jmapro.2019.11.011
[7] Wang T, Cheng H, Chen Y, et al. Multiplex path for magnetorheological jet polishing with vertical impinging[J]. Applied Optics, 2014, 53(10): 2012-2019.
https://dx.doi.org/10.1364/AO.53.002012
[8] Wang T, Cheng H B, Dong Z C, et al. Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid[J]. Journal of Materials Processing Technology, 2013, 213(9): 1532-1537.
https://dx.doi.org/10.1016/j.jmatprotec.2013.03.017
[9] ANSYS FLUENT User's Guide(Release 14. 0)[R]. Ansys Inc. , 2011.
[10] Oka Y I, Okamura K, Yoshida T. Practical estimation of erosion damage caused by solid particle impact. Part 1: effects of impact parameters on a predictive equation[J]. Wear, 2005, 295: 95-101.
https://dx.doi.org/10.1016/j.wear.2005.01.039
[11] Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. Journal of Aircraft, 1975, 12(5): 471-478.
https://dx.doi.org/10.2514/3.59826
[12] Preston F. The theory and design of plate glass polishing machines[J]. Journal of Society of Glass Technology, 1927, 9: 214-256.
[13] 李兆泽. 磨料水射流抛光技术研究[D]. 长沙: 国防科学技术大学, 2011.
https://dx.doi.org/10.7666/d.d202412
引用本文王彪, 王振忠, 付振峰, 等. 磨料水射流抛光工具腔室结构优化设计及喷嘴孔径研究[J]. 中国机械工程技术学报, 2022, 1(2): 8-16.
CitationWANG Biao, WANG Zhenzhong, FU Zhenfeng, et al. Study on chamber structure optimization and nozzle aperture of fluid jet polishing tool[J]. Frontiers of Chinese Mechanical Engineering and Technology, 2022, 1(2): 8-16.