2025年7月3日 星期四
取代率可调的降冰片烯改性壳聚糖的研究
Research of Norbornene Functionalized Chitosan with Tailorable Degree of Substitution
摘要

壳聚糖因其产量丰富, 同时具有生物安全性、可降解性和抗菌抗炎等特性, 而受到医疗行业广泛关注。但是壳聚糖的水溶性较差, 限制了其应用。将壳聚糖改性, 制备成可溶于水的壳聚糖水凝胶, 例如可光固化交联的水凝胶, 可使其广泛应用于细胞培养、组织工程、3D打印等领域。在光固化交联中, 巯基-降冰片烯点击反应因其极高的反应速率而值得被关注。本研究通过改变反应参数包括反应物的量、反应时间和反应体系酸碱度三个物理量, 制备了一系列降冰片烯改性壳聚糖水凝胶, 并提出了使用核磁共振氢谱技术来表征其取代率的计算方法。研究发现, 在壳聚糖改性的反应体系中同时发生取代反应和酸酐水解反应, 两个反应相互影响, 对反应参数的综合调节可以调控反应速率以及产物的取代率, 本研究的取代率可在9%~43%范围内变化。本研究中的降冰片烯改性壳聚糖水凝胶具有超过50%的吸水率, 其优秀的吸水能力使其可以应用于伤口敷料、药物递送等领域。

Abstract

Chitosan has attracted widespread attention in the medical industry because of its abundant yield, biocompatibility, biodegradability, antibacterial and anti-inflammatory properties. However, chitosan shows limited water solubility, preventing its development. To functionalize chitosan to water-soluble chitosanbased hydrogels, such as photo-curable hydrogels, which can be widely used in cell culture, tissue engineering, 3D printing and other fields. In the field of photocuring reactions, the thiol-norbornene click reaction is worth to be studied due to its extremely high reactivity. In this research, a family of norbornene-functionalized chitosan were prepared by changing the reaction parameters, including the amount of reactants, reaction time and pH of the system. A calculation method of degree of substitution was proposed, based on the characterization of 1H nuclear magnetic resonance spectroscopy. The research investigated that in this chitosan functionalized reaction system, the substitution reaction and the anhydride hydrolysis reaction occur simultaneously and intact, and and the two reactions affect each other The reaction rate and degree of substitution can be tailored by comprehensively adjusting the reaction parameters. The degree of substitution ranged from 9% to 43% in this research. Norbornene-functionalized chitosan was able to absorb water more than 50% in mass change, and its excellent water absorption ability can be used in the application areas of wound healing and drug delivery and other fields.

DOI10.48014/pcms.20240901001
文章类型研究性论文
收稿日期2024-09-01
接收日期2024-09-24
出版日期2024-12-28
关键词壳聚糖, 降冰片烯基团, 巯基-烯点击反应, 核磁共振氢谱
KeywordsChitosan, Norbornene, Thiol-ene Click Reaction, 1H NMR
作者吕诗达
AuthorLYU Shida
所在单位上海时代天使医疗器械有限公司, 上海 200433
CompanyShanghai EA Medical Instrument Co. , Ltd. , Shanghai 200433, China
浏览量233
下载量86
参考文献[1] 王双燕. 壳聚糖及其衍生物在医药领域的研究进展[J]. 云南化工, 2021, 48(04): 7-8+16. 10. 3969/j. issn. 1672-2981. 2007. 03. 022
[2] 齐远征, 焦俊杰, 李永丽, 等. 壳聚糖促进口腔软组织修复的研究进展[J]. 现代口腔医学杂志, 2021, 35(6).
[3] 刘卓冉, 李玉梅, 刘俊彦, 等. 口腔抗菌领域中壳聚糖及其衍生物的作用[J]. 中国组织工程研究, 2023, 27(21): 3361-3367.
[4] 邹俊东, 刘定坤, 杨楠, 等. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(01): 90-94.
https://doi.org/10.7518/gjkq.2020002
[5] 邱赛男, 臧睿觉, 梅予峰, 等. 氟化钠壳聚糖凝胶对乳牙釉质抗酸能力的影响[J]. 口腔医学, 2022, 42(01): 68-71+91.
https://doi.org/10.13591/j.cnki.kqyx.2022.01.012.
[6] 库得来提·阿不都克力木, 董红宾, 多力昆·吾甫尔.壳聚糖温敏水凝胶在口腔相关组织工程的应用进展[J]. 口腔医学, 2024, 44(02): 139-143.
https://doi.org/10.13591/j.cnki.kqyx.2024.02.011.
[7] 田宇航, 刘亚东, 崔宇韬, 等. 壳聚糖生物材料支架在治疗感染性骨缺损中的应用[J]. 中国组织工程研究, 2022, 26(21): 3415-3420.
[8] 汤薇, 董静, 赵金荣, 等. 壳聚糖改性及改性壳聚糖应用研究进展[J]. 济南大学学报(自然科学版), 2023, 37(01): 84-93.
https://doi.org/10.13349/j.cnki.jdxbn.20220928.002.
[9] LYU S, ZHENG F, AGUILAR-TADEO J A, et al. Patterned, morphing composites via maskless photo-click lithography[ J/OL]. Soft Matter, 2020, 16(5): 1270-1278.
https://doi.org/10.1039/C9SM02056J.
[10] REDAELLI F, SORBONA M, ROSSI F. Synthesis and processing of hydrogels for medical applications[M/ OL]//Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine. Elsevier Ltd, 2016.
http://dx.doi.org/10.1016/B978-0-08-100262-9.00010-0.
[11] 王喆麟, 黄彩娟. 通过巯基-烯点击反应快速合成生物基热固性树脂的研究进展[J]. 塑料工业, 2023, 51(06): 24-29.
https://doi.org/10.3969/j.issn.1005-5770.2023.06.004
[12] KHIRE V S, KLOXIN A M, COUCH C L, et al. Synthesis, characterization and cleavage of linear polymers attached to silica nanoparticles formed using thiol-acrylateconjugate addition reactions[J/OL]. Journal ofPolymer Science Part A: Polymer Chemistry, 2008, 46(20): 6896-6906.
http://doi.wiley.com/10.1002/pola.22999.
[13] MUNOZ Z, SHIH H, LIN C C. Gelatin hydrogelsformed by orthogonal thiol-norbornene photochemistryfor cell encapsulation[J/OL]. Biomater. Sci. , 2014, 2(8): 1063-1072.
http://xlink.rsc.org/?DOI=C4BM00070F.
[14] LIAO H, MUNOZ-PINTO D, QU X, et al. Influence ofhydrogel mechanical properties and mesh size on vocalfold fibroblast extracellular matrix production and phenotype[J/OL]. Acta Biomaterialia, 2008, 4(5): 1161-1171.
http://linkinghub.elsevier.com/retrieve/pii/S1742706108001074.
[15] FAIRBANKS B D, SCHWARTZ M P, HALEVI A E, et al. A Versatile Synthetic Extracellular Matrix Mimicvia Thiol-Norbornene Photopolymerization[J/OL]. AdvancedMaterials, 2009, 21(48): 5005-5010.
http://doi.wiley.com/10.1002/adma.200901808.
[16] HOYLE C E, LEE T Y, ROPER T. Thiol-enes: Chemistryof the past with promise for the future[J/OL]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(21): 5301-5338.
http://doi.wiley.com/10.1002/pola.20366.
[17] 郑淑娟, 仝涛, 许文涛, 等. 巯基-烯点击反应介导的生物传感研究进展[J]. 生物技术通报, 2021, 37(12): 243-251.
https://doi.org/10.13560/j.cnki.biotech.bull.1985.2021-0329.
[18] WALKER C N, SARAPAS J M, KUNG V, et al. Multiblock Copolymers by Thiol Addition Across Norbornene[J/OL]. ACS Macro Letters, 2014, 3(5): 453-457.
http://pubs.acs.org/doi/10.1021/mz5001288.
[19] LIN C C, KI C S, SHIH H. Thiol-norbornene photoclickhydrogels for tissue engineering applications[J/OL]. Journal of Applied Polymer Science, 2015, 132(8): 41563.
http://doi.wiley.com/10.1002/app.41563.
[20] PEREIRA R F, BARRIAS C C, BÁRTOLO P J, et al. Cell-instructive pectin hydrogels crosslinked via thiolnorbornenephoto-click chemistry for skin tissue engineering[J/OL]. Acta Biomaterialia, 2018, 66: 282-293.
https://doi.org/10.1016/j.actbio.2017.11.016.
[21] BLANK F, JANIAK C. Metal catalysts for the vinyl/addition polymerization of norbornene[J/OL]. CoordinationChemistry Reviews, 2009, 253(7-8): 827-861.
https://doi.org/10.1016/j.ccr.2008.05.010.
[22] PERERA M M, AYRES N. Gelatin based dynamic hydrogelsvia thiol-norbornene reactions[J/OL]. PolymerChemistry, 2017, 8(44): 6741-6749.
https://doi.org/10.1039/C7PY01630A.
[23] HOYLE C E, BOWMAN C N. Thiol-Ene Click Chemistry[J/OL]. Angewandte Chemie International Edition, 2010, 49(9): 1540-1573.
https://doi.org/10.1002/anie.200903924.
[24] MARSILLA K, ISHAK K, AHMAD Z, et al. Synthesisand characterization of cis-5-norbornene-2, 3-dicarboxylicanhydride-chitosan[J]. e-polymers, 2010(064): 1-11.
[25] FAIRBANKS B D, SCHWARTZ M P, BOWMAN CN, et al. Photoinitiated polymerization of PEG-diacrylatewith lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility[J/OL]. Biomaterials, 2009, 30(35): 6702-6707.
https://doi.org/10.1016/j.biomaterials.2009.08.055.
[26] SOCRATES G. Infrared Characteristic Group Frequencies: Tables and Charts[M]. Second Edi. John Wiley &Sons, 1994.
[27] TRUONG V X, HUN M L, LI F, et al. In situ-formingclick-crosslinked gelatin based hydrogels for 3D cultureof thymic epithelial cells[J/OL]. Biomaterials Science, 2016, 4(7): 1123-1131.
https://doi.org/10.1039/C6BM00254D.
[28] FULMER G R, MILLER A J M, SHERDEN N H, etal. NMR Chemical Shifts of Trace Impurities: CommonLaboratory Solvents, Organics, and Gases in DeuteratedSolvents Relevant to the Organometallic Chemist[J/OL]. Organometallics, 2010, 29(9): 2176-2179.
https://doi.org/10.1021/om100106e.
[29] GUINESI L S, CAVALHEIRO É T G. The use of DSCcurves to determine the acetylation degree of chitin/chitosansamples[J/OL]. Thermochimica Acta, 2006, 444(2): 128-133.
https://doi.org/10.1016/j.tca.2006.03.003.
[30] BAXTER A, DILLON M, ANTHONY TAYLOR KD, et al. Improved method for i. r. determination of thedegree of N-acetylation of chitosan[J/OL]. InternationalJournal of Biological Macromolecules, 1992, 14(3): 166-169.
https://doi.org/10.1016/S0141-8130(05)80007-8.
[31] LAVERTU M, XIA Z, SERREQI A N, et al. A validated1H NMR method for the determination of the degreeof deacetylation of chitosan[J/OL]. Journal ofPharmaceutical and Biomedical Analysis, 2003, 32(6): 1149-1158.
https://doi.org/10.1016/S0731-7085(03)00155-9.
[32] VÅRUM K M, ANTOHONSEN M W, GRASDALENH, et al. Determination of the degree of N-acetylationand the distribution of N-acetyl groups in partially Ndeacetylatedchitins(chitosans)by high-field n. m. r. spectroscopy[J/OL]. Carbohydrate Research, 1991, 211(1): 17-23.
https://doi.org/10.1016/0008-6215(91)84142-2.
[33] HIRAI A, ODANI H, NAKAJIMA A. Determinationof degree of deacetylation of chitosan by 1H NMRspectroscopy[J/OL]. Polymer Bulletin, 1991, 26(1): 87-94.
https://doi.org/10.1007/BF00299352.
[34] CLAYDEN J, GREEVES N, WARREN, et al. OrganicChemistry[M]. Second. Oxford University Press, 2012.
[35] DRIEMEIER C, MENDES F M, OLIVEIRA M M. Dynamicvapor sorption and thermoporometry to probewater in celluloses[J/OL]. Cellulose, 2012, 19(4): 1051-1063.
https://doi.org/10.1007/s10570-012-9727-z.
[36] HASSEL R L, PH D, HESSE N D, et al. Characterizationof Water Adsorption and Absorption in Pharmaceuticals: Vol. 1[R].
引用本文吕诗达. 取代率可调的降冰片烯改性壳聚糖的研究[J]. 中国材料科学进展, 2024, 3(4): 42-53.
CitationLYU Shida. Research of norbornene functionalized chitosan with tailorable degree of substitution[J]. Progress in Chinese Materials Sciences, 2024, 3(4): 42-53.