2024年5月6日 星期一
中国超大特大城市低碳发展多维与综合测度研究
Multi-dimensional and Comprehensive Measurement Study on Low-carbon Development of China's Megaciti
摘要

本文以中国超大特大城市为研究单元, 从低碳经济、低碳开发、低碳生活、低碳环境、低碳能耗5个维度选择18个指标, 构建了低碳发展评价体系, 并结合数据包络分析, 对我国超大特大城市低碳发展水平进行多维度综合测度评价。研究结果表明: (1) 我国16个超大特大城市2005年、2010年、2015年平均综合得分分别为0. 0892、0. 0854、0. 863, 低碳发展水平总体呈现出先减小后回升的趋势; (2) 在空间上, 东部城市低碳发展水平总体较高, 但其内部差异较大, 京津冀地区发展不均衡, 北京发展水平较高、而天津发展水平较低。西部地区发展指数总体较低, 重庆、成都、西安得分均为低水平和较低水平; (3) 2005—2015年低碳经济发展平稳提升, 其中东部地区发展水平明显提升, 低碳开发发展下降, 低碳生活呈明显下降趋势, 低碳环境发展有所改善, 低碳能耗的发展基本稳定, 但格局略有变化; (4) 2005—2015年全国低碳发展综合绩效整体水平不高, 发挥到最优水平的75. 3%, 存在投入-产出效率不高的问题。低碳发展纯技术效率仅发挥到最优水平的88. 3%, 具有较大发展潜力。低碳发展规模效率发挥到最优水平的90%, 存在提升空间。

Abstract

Taking China's megacities as the research unit, this paper selected 18 indexes from five dimensions: low-carbon economy, low-carbon development, low-carbon life, low-carbon environment and low-carbon energy consumption, and constructed a low-carbon development evaluation system. Combined with data envelopment analysis, a multi-dimensional and comprehensive measurement evaluation of the low-carbon development level of China's megacities was also conducted. The results showed that: (1) The average comprehensive scores of 16 Chinese megacities in 2005, 2010 and 2015 were 0. 0892, 0. 0854 and 0. 863, respectively. The low carbon development level showed a trend of first decreasing and then rising. (2) Spatially, the low-carbon development level of eastern cities was generally high, but the internal differences were large, and the development of the Beijing-Tianjin-Hebei region was uneven, with Beijing having a higher level of development and Tianjin having a lower level of development. The development index of the western region was generally low, and the scores of Chongqing, Chengdu and Xi'an were all at low and lower levels. (3) From 2005 to 2015, the development of low-carbon economy increased steadily, of which the development level of the eastern region was significantly improved. The level of low-carbon development had declined. The level of low-carbon living was showing a significant downward trend. The development of a low-carbon environment had improved. The development of low-carbon energy consumption was basically stable, but the pattern had changed slightly. (4) From 2005 to 2015, the overall level of the comprehensive performance of national low-carbon development was not high, which reached 75. 3% of the optimal level, and there was a problem of low input-output efficiency. The pure technical efficiency of low-carbon development had only reached 88. 3% of the optimal level, which had great development potential. The scale efficiency of low-carbon development had reached 90% of the optimal level, and there was room for improvement.  

DOI10.48014/fdg.20221220002
文章类型研究性论文
收稿日期2022-12-20
接收日期2022-12-27
出版日期2022-12-28
关键词低碳发展, 综合测度, 测度方法, 超大特大城市
KeywordsLow-carbon development, comprehensive measurement, measurement method, Megacities
作者秦悦1, 张学儒2,3,*
AuthorQIN Yue1, ZHANG Xueru2,3,*
所在单位1. 重庆交通大学建筑与城市规划学院, 重庆 050047
2. 河北经贸大学公共管理学院, 石家庄 050061
3. 河北省城乡融合发展协同创新中心, 石家庄 050061
Company1. College of Architecture and Urban Planning of Chongqing Jiaotong University, Chongqing 050047, China
2. School of Public Management of Hebei University of Economics and Business, Shijiazhuang 050061, China
3. Hebei Collaborative Innovation Center for Urban-Rural Integration Development, Shijiazhuang 050061, China
浏览量488
下载量170
参考文献[1] Papers H O C. Our Energy Future: Creating a Low Carbon Economy[R]. 2003.
[2] Mahony T O. Decomposition of Ireland's carbon emissions from 1990 to 2010: An extended Kaya identity[J]. Energy Policy, 2013, 59(4-5): 573-581.
https://doi.org/10.1016/j.enpol.2013.04.013
[3] Schenk N J, Lensink S M. Communicating uncertainty in the IPCC’s greenhouse gas emissions scenarios[J]. Climatic Change, 2007, 82(3-4): 293-308.
https://doi.org/10.1007/S10584-006-9194-3
[4] Lenzen M. Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis[J]. Energy Policy, 1998, 26(6): 495-506.
https://doi.org/10.1016/S0301-4215(98)00012-3
[5] Diakoulaki D, Mandaraka M. Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector[J]. Energy Economics, 2007, 29(4): 636-664.
https://doi.org/10.1016/j.eneco.2007.01.005
[6] 王喜, 张艳, 秦耀辰, 等. 我国碳排放变化影响因素的时空分异与调控[J]. 经济地理, 2016, 36(8): 158-165.
https://doi.org/10.15957/j.cnki.jjdl.2016.08.023
[7] 谢守红, 蔡海亚, 夏刚祥. 中国交通运输业碳排放的测算及影响因素[J]. 干旱区资源与环境, 2016, 30(5): 13-18.
https://doi.org/10.13448/j.cnki.jalre.2016.140
[8] 黄国华, 刘传江, 赵晓梦. 长江经济带碳排放现状及未来碳减排[J]. 长江流域资源与环境, 2016, 25(4): 638-644.
https://doi.org/10.11870/cjlyzyyhj201604014
[9] 胡欢, 章锦河, 熊杰, 等. 河北省碳源碳汇测算及碳减排压力分析[J]. 地理与地理信息科学, 2016, 32(3): 61-67.
https://doi.org/10.3969/j.issn.1672-0504.2016.03.012
[10] 王新玉. 低碳发展与循环发展、绿色发展的关系研究[J]. 生态经济, 2014, 30(9).
[11] 原嫄, 席强敏, 孙铁山, 等. 产业结构对区域碳排放的影响———基于多国数据的实证分析[J]. 地理研究, 2016, 35(1): 82-94.
https://doi.org/10.11821/dlyj201601008
[12] 韩增林, 郭媛媛, 王泽宇, 等. 环渤海沿海地市低碳转型绩效评价与影响因素分析[J]. 人文地理, 2017(3): 108-116.
https://doi.org/10.13959/j.issn.1003-2398.2017.03.014
[13] 吴健生, 许娜, 张曦文. 中国低碳城市评价与空间格局分析[J]. 地理科学进展, 2016, 35(2): 204-213.
[14] 鲍超, 罗奎. 中国省会城市低碳发展水平的综合测度及分析[J]. 中国科学院大学学报, 2013, 30(4): 497-503.
[15] 陈飞, 诸大建. 低碳城市研究的内涵、模型与目标策略确定[J]. 城市规划学刊, 2009(4): 7-13.
https://doi.org/10.3969/j.issn.1000-3363.2009.04.002
[16] 王喜, 秦耀辰, 鲁丰先, 等. 黄河中下游地区主要省份低碳经济发展水平的时空差异研究[J]. 地理科学进展, 2013, 32(4): 505-513.
[17] 谢志祥, 秦耀辰, 沈威, 等. 中国低碳经济发展绩效评价及影响因素[J]. 经济地理, 2017, 37(3): 1-9.
https://doi.org/10.15957/j.cnki.jjdl.2017.03.001
[18] 王锋, 秦豫徽, 刘娟, 等. 多维度城镇化视角下的碳排放影响因素研究———基于中国省域数据的空间杜宾面板模型[J]. 中国人口资源与环境, 2017, 27(9): 151-161.
https://doi.org/10.12062/cpre.20170434
[19] 张丽君, 秦耀辰. 城市碳基能源代谢分析框架及核算体系[J]. 地理学报, 2013, 68(8): 1048-1058.
[20] 张金萍, 秦耀辰, 张艳, 等. 城市CO2 排放结构与低碳水平测度———以京津沪渝为例[J]. 地理科学, 2010, 17(6): 874-879.
[21] 胡林林, 贾俊松, 毛端谦, 等. 基于FAHP-TOPSIS法的我国省域低碳发展水平评价[J]. 生态学报, 2013, 33(20): 6652-6661.
https://doi.org/10.5846/stxb201305121027
[22] 周泽炯, 胡建辉. 基于Super—SBM模型的低碳经济发展绩效评价研究[J]. 资源科学, 2013, 35(12): 2457-2466.
[23] 机构金融. 国务院印发《关于调整城市规模划分标准的通知》[J]. 上海城市规划, 2014(6): 159.
[24] 国家统计局. 中国城市统计年鉴-2016[R]. 2016.
[25] 国家统计局. 中国城市统计年鉴-2011[R]. 2011.
[26] 国家统计局. 中国城市统计年鉴-2006[R]. 2006.
[27] 李治, 李国平, 胡振. 西部特大城市低碳发展的现状问题及目标策略研究———以西安市为例[J]. 干旱区地理(汉文版), 2017, 40(2): 434-440.
https://doi.org/10.13826/j.cnki.cn65-1103/x.2017.02.023
[28] 徐小任, 徐勇. 中国居民住房内生活设施配置及区域差 异[J]. 地理科学进展, 2016, 35(2): 173-183.
[29] 徐勇, 段健, 徐小任. 区域多维发展综合测度方法及应用[J]. 地理学报, 2016, 71(12): 2129-2140.
[30] Cooka W D. Data envelopment analysis(DEA)-Thirty years on[J]. Eur J Oper Res, 2009, 192(1): 1-17.
[31] 周平. 基于超效率DEA模型的区域低碳效率空间分异———以湖南省各市州为例[J]. 经济地理, 2017, 37(3): 188-192.
https://doi.org/10.15957/j.cnki.jjdl.2017.03.025
[32] 邓洪波, 陆林. 基于DEA模型的安徽省城市旅游效率研究[J]. 自然资源学报, 2014, 29(2): 313-323.
引用本文秦悦, 张学儒. 中国超大特大城市低碳发展多维与综合测度研究[J]. 发展地理学前沿, 2022, 1(2): 41-49.
CitationQIN Yue, ZHANG Xueru. Multi-dimensional and comprehensive measurement study on low-carbon development of China's megacities[J]. Frontiers of Development Geography, 2022, 1(2): 41-4.