2024年6月20日 星期四
多孔生物质衍生炭材料制备及储钠性能研究
Preparation of Porous Biomass-Derived Carbon Material and Its Sodium Storage Capacity
摘要

采用来自中国新疆地区的生物质———恰玛古为碳前驱体, 充分利用其体内固有的孔道结构, 并在此基础上进行预碳化和活化, 设计制备了多孔生物质衍生炭材料 (BDPC) 。利用扫描电子显微镜、X射线衍射、Raman光谱、X射线光电子能谱和氮气吸/脱附测试对材料进行结构与物相分析;通过循环伏安法、恒流充放电、循环、倍率和电化学阻抗测试表征了该材料应用于储钠阳极的电化学性能。结果表明, BDPC-600因含有氮、氧杂原子 (含量分别为3. 36at. %和7. 61at. %) , 故具有良好的储钠性能:当电流密度为0. 1A/g时, 经过100次循环充放电过程后, 可逆容量为187. 7mAh/g, 容量保持率为88. 7%。此外, BDPC-900由于具有较大的比表面积 (2396. 60m2/g) 和孔容 (1. 70cm3/g) , 故具有优异的倍率性能。

Abstract

Biomass-derived porous carbon (BDPC) was designed and prepared from Qamgur, a biomass from Xinjiang, China, as the carbon precursor, by pre-carbonization and activation, while retaining Qamgur’s inherent pore structure. The microstructure, phase composition and pore structure of the material were analyzed by scanning electron microscope (SEM) , X-ray diffraction (XRD) , Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption desorption test; The electrochemical properties of the material as a sodium storage anode were characterized by cyclic voltammetry, constant current charge-discharge, cycling, magnification and electrochemical impedance measurements. The results show that BDPC- 600 has good sodium storage performance because it contains nitrogen and oxygen heteroatoms (the contents are 3. 36 at. % and 7. 61 at. %, respectively) . At 0. 1A/g current density, after 100 cycles of charge and discharge, the reversible capacity is 187. 7mAh/g, and the capacity retention rate is 88. 7%. In addition, BDPC-900 has excellent magnification performance due to its large specific surface area (2396. 60 m2/g) and pore volume (1. 70cm3/g) .

DOI10.48014/pcms.20220603001
文章类型研究性论文
收稿日期2022-06-03
接收日期2022-06-25
出版日期2022-06-28
关键词生物质炭材料, 阳极, 储钠, 放电比容量
KeywordsBiomass carbon material, anode, sodium storage, specific discharge capacity
作者韩嘉帅, 刘冬明, 杨恩恩, 刘思洋, 金鑫, 胡方圆*
AuthorHAN Jiashuai, LIU Dongming, YANG Enen, LIU Siyang, JIN Xin, HU Fangyuan*
所在单位大连理工大学材料科学与工程学院, 大连 116024
CompanySchool of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
浏览量1016
下载量633
基金项目中国石油科技创新基金项目(2021DQ02-1001)、兴辽英才青年拔尖项目(XLYC1907144)、大连理工大学“星海优青” 项目(X20200303)资助
参考文献[1] Tahira P, Muhammad S, Nadia S, et al. Prospects in anode materials for sodium ion batteries-A review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109549.
https://doi.org/10.1016/j.rser.2019.109549
[2] 朱晟, 彭怡婷, 闵宇霖, 等. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(09): 4837-4852.
https://doi.org/10.16085/j.issn.1000-6613.2021-0745
[3] Taehoon K, Song W, Son D, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7: 2942-2964.
https://doi.org/10.1039/C8TA10513H
[4] Ghassan Z, Rodolfo D L, Monica C, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308.
https://doi.org/10.1016/j.rser.2018.03.002
[5] 高靖宇. 高性能混合型电容器负极材料的制备及性能研究[D]. 合肥: 中国科学技术大学, 2021.
https://doi.org/10.27517/d.cnki.gzkju.2021.000553
[6] Usiskin R, Lu Y, Popovic J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6: 1020-1035.
https://doi.org/10.1038/s41578-021-00324-w
[7] Liu S, Shao W, Zhang W, et al. Regulating microstructures of soft carbon anodes by terminations of Ti3C2Tx MXene toward fast and stable sodium storage[J]. Nano Energy, 2021, 87: 106097.
https://doi.org/10.1016/j.nanoen.2021.106097
[8] Fang Y, Luan D, Chen Y, et al. Rationally designed threelayered Cu2S@Carbon@ MoS2 hierarchical nanoboxes for efficient sodium storage[J]. Angewandte Chemie-International Edition, 2020, 59(18): 7178-7183.
https://doi.org/10.1002/anie.201915917
[9] Jia R, Shen G, Chen D, et al. Recent progress and future prospects of sodium-ion capacitors[J]. Science China- Materials, 2020, 63(2): 185-206.
https://doi.org/10.1007/s40843-019-1188-x
[10] Shao W, Hu F, Song C, et al. Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7: 6363- 6373.
https://doi.org/10.1039/C8TA11921J
[11] Xie F, Xu Z, Guo Z, et al. Disordered carbon anodes for Na-ion batteries-quo vadis[J]. Science China-Chemistry, 2021, 64(10): 1679-1692.
https://doi.org/10.1007/s11426-021-1074-8
[12] Yan Y, Yin Y, Guo Y, et al. A sandwich-like hierarchically porous carbon/graphene composite as a highperformance anode material for sodium-ion batteries[J]. Advanced Energy Materials. 2014, 4: 1301584.
https://doi.org/10.1002/aenm.201301584
[13] LiuC, Chu J, Liu Y, et al. The synergistic effect of carbon coating and CNTs compositing on the hard carbon anode for sodium ion batteries[J]. RSC Advances, 2019, 9: 21667-21670.
https://doi.org/10.1039/C9RA04251B
[14] Jin C, Nai J, Sheng O, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy Environmental Science, 2021, 14(3): 1326-1379.
https://doi.org/10.1039/D0EE02848G
[15] Senthil C, Lee C, Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110464.
https://doi.org/10.1016/j.rser.2020.110464
[16] Jiang G, Senthil R A, Sun Y, et al. Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors[J]. Journal of Power Sources, 2022, 520: 230886.
https://doi.org/10.1016/j.jpowsour.2021.230886
[17] Liu W, Jiang H, Yu H. Emerging applications of biocharbased materials for energy storage and conversion[J]. Energy Environmental Science, 2019, 12(6): 1751-1779.
https://doi.org/10.1039/C9EE00206E
[18] Huang Y, Tang Z, Zhou S, et al. Renewable waste biomassderived carbon materials for energy storage[J]. Journal of Physics D-Applied Physics, 2022, 55: 313002.
https://doi.org/10.1088/1361-6463/ac6633
[19] Hu F, Liu S, Li S, et al. High and ultra-stable energy storage from all-carbon sodium-ion capacitor with 3D framework carbon as cathode and carbon nanosheet as anode[J]. Journal of Energy Chemistry, 2021, 55: 304-312.
https://doi.org/10.1016/j.jechem.2020.06.034
[20] Sun N, Liu H, Xu B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry, 2015, 3(41): 20560-20566.
https://doi.org/10.1039/C5TA05118E
[21] 钟家宝, 李瑀, 王玲, 等. 梧桐果壳衍生硬碳用作钠离子电池负极材料[J]. 功能高分子学报, 2022, 35(6): 1-9.
https://doi.org/10.14133/j.cnki.1008-9357.20220401001
[22] Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22: 23710-23725.
https://doi.org/10.1039/C2JM34066F
[23] 赵公元. 葱皮衍生炭材料的制备及其储钠性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
https://doi.org/10.27061/d.cnki.ghgdu.2021.000166
[24] Lozano-Castelló D, Calo J, Cazorla-Amorós D, et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen[J]. Carbon, 2007, 45(13): 2529-2536.
https://doi.org/10.1016/j.carbon.2007.08.021
[25] Liu S, Hu F, Shao W, et al. A novel strategy of in situ trimerization of cyano groups between the Ti3C2Tx(MXene)interlayers for high-energy and high-power sodium-ion capacitors[J]. Nano-Micro Letters, 2020, 12: 135.
https://doi.org/10.1007/s40820-020-00473-7
[26] 张静. 基于海藻酸钠的分级多孔硬碳制备及其储钠性能研究[D]. 上海: 上海交通大学, 2020.
https://doi.org/10.27307/d.cnki.gsjtu.2020.003235
[27] Nekane N, Olatz N, Amaia I, et al. On the road to sustainable energy storage technologies: Synthesis of anodes for Na-Ion batteries from biowaste[J]. Batteries, 2022, 8(4): 28.
https://doi.org/10.3390/batteries8040028
[28] Guan Z, Liu H, Xu B, et al. Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material[J]. Journal of Materials Chemistry A, 2015, 3(15): 7849-7854.
https://doi.org/10.1039/C5TA01446H
[29] 韩大量. 碳基混合电容器的可控构建及性能研究[D]. 天津: 天津大学, 2020.
https://doi.org/10.27356/d.cnki.gtjdu.2020.000403
[30] Pan D, Zhang M, Wang Y, et al. In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors[J]. Chemical Physics Letters, 2017, 685: 457-464.
https://doi.org/10.1016/j.cplett.2017.08.021
[31] Zhang D, Han M, Li Y, et al. Phosphorus and sulfur dual doped hierarchic porous carbons with superior supercapacitance performance[J]. Electrochimica Acta, 2016, 222: 141-148.
https://doi.org/10.1016/j.electacta.2016.10.184
[32] Shi G, Han Z, Hu L, et al. N/O co-doped hard carbon derived from cocklebur fruit for sodium-ion storage[J]. ChemElectroChem, 2022, 9(8): e202200138.
https://doi.org/10.1002/celc.202200138
[33] Cheng N, Zhao J, Fan L, et al. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium- ion batteries anode[J]. Chemical Communications, 2019, 55(83): 12511-12514.
https://doi.org/10.1039/C9CC06561J
[34] Sun N, Guan Z, Liu Y, et al. Extended “adsorption– insertion” model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351.
https://doi.org/10.1002/aenm.201901351
[35] He H, Sun D, Tang Y, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233-251.
https://doi.org/10.1016/j.ensm.2019.05.008
引用本文韩嘉帅, 刘冬明, 杨恩恩, 等. 多孔生物质衍生炭材料制备及储钠性能研究[J]. 中国材料科学进展, 2022, 1(1): 25-37.
CitationHAN Jiashuai, LIU Dongming, YANG Enen, et al. Preparation of porous biomass-derived carbon material and its sodium storage capacity[J]. Progress in Chinese Materials Sciences, 2022, 1(1): 25-37.