摘要 | 随着我国“海洋强国”战略的全面实施, FRP增强海水海砂混凝土 (FRP-SSC) 结构能够缓解淡水和河砂等自然资源的日渐枯竭, 具有显著的就地取材优势, 将有广阔的应用前景。而碳化养护FRP-SSC结构, 可实现CO2高附加值利用与主动封存, 且可以降低SSC内部碱性环境对FRP筋长期耐久性的不利影响。本文提出将FRP-SSC梁截面分为碳化区和非碳化区两种力学性能不同的混凝土, 根据梁截面的内力平衡和变形协调, 建立封存CO2的FRP-SSC梁正截面抗弯承载力的计算方法, 并结合有限元数值模型, 研究碳化深度对FRP-SSC梁抗弯承载力的影响规律。结果表明, 对于受压破坏 (较理想破坏模式) 的FRP-SSC梁, CO2封存可提高该破坏模式下承载力的7. 75%; 鉴于当配筋率从0. 74%增加到1. 12%, 理想破坏模式下其承载力仅提高16. 7%, 所以CO2封存在一定情况下可显著提升正截面受弯承载性能。当FRP-SSC梁发生受拉破坏时, CO2封存对其抗弯承载力影响较小。 |
Abstract | With the comprehensive implementation of the China’s“Maritime Power”strategy, the utilization of FRP reinforced seawater-sea sand concrete (FRP-SSC) structures presents significant potential in alleviating the depletion of natural resources such as freshwater and river sand. The noteworthy advantage lies in its ability to locally sourced materials, thus offering substantial application prospects. Carbonation curing for FRP-reinforced seawater-sea sand concrete (FRP-SSC) structures on the other hand, can achieve highadded- value utilization and active storage of CO2, and reduce the adverse impact of the alkaline environment inside the SSC on the long-term durability of FRP bars. In this paper, it is proposed to divide the section of FRP-SSC beams into two kinds of concrete with different mechanical properties, carbonated and non-carbonated zones. According to the internal force balance and deformation coordination of the beam section, a calculation method for the flexural capacity of FRP-SSC beams with active CO2 storage is established. Finite element numerical model also is employed. Then, the influence law of carbonation depth on the flexural capacity of FRP-SSC beams is discussed. The results show that for FRP-SSC beams subjected to compression failure (more ideal mode of damage) , CO2 storage can increase the flexural capacity by 7. 75%. Considering that the flexural capacity in the ideal mode of damage is increased only by 16. 7% when the reinforcement ratio increases from 0. 74% to 1. 12%, CO2 storage shows a considerable improvement in the flexural capacity of FRP-SSC beams under certain circumstances. When FRP-SSC beams undergo tensile damage, CO2 storage has less effect on their flexural capacity. |
DOI | 10.48014/ems.20231224001 |
文章类型 | 研究性论文 |
收稿日期 | 2023-12-24 |
接收日期 | 2024-01-21 |
出版日期 | 2024-06-28 |
关键词 | FRP筋海水海砂混凝土结构, CO2封存, 受弯承载性能, 理论计算 |
Keywords | FRP-reinforced Seawater-sea Sand Concrete(FRP-SSC)structure, CO2 storage, Flexural capacity, Theoretical calculation |
作者 | 郭冰冰1,2,*, 路鹏超1, 于琦3, 王艳2, 牛荻涛1,2 |
Author | GUO Bingbing1,2,*, LU Pengchao1, YU Qi3, WANG Yan2, NIU Ditao1,2 |
所在单位 | 1. 西安建筑科技大学土木工程学院, 西安 150010 2. 西安建筑科技大学绿色建筑全国重点实验室, 西安 150010 3. 青岛青建新型材料集团, 青岛 266041 |
Company | 1. College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 150010, China 2. State Key Laboratory of Green Building, Xi'an University of Architecture and Technology, Xi'an 150010, China 3. Qingdao Qingjian New Material Group Co. LTD, Qingdao 266041, China |
浏览量 | 483 |
下载量 | 165 |
参考文献 | [1] 关国浩, 王学志, 贺晶晶. 海水海砂混凝土研究进展[J]. 硅酸盐通报, 2022, 41(05): 1483-1493. https://dx.doi.org/10.3969/j.issn.1001-1625.2022.5.gsytb202205001 [2] Monteiro P J M, Miller S A, Horvath A. Towards sustainable concrete[J]. Nature Materials, 2017, 16(7): 698-699. https://doi.org/10.1038/nmat4930 [3] Shaikh, Ahmed F U. Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates[J]. International Journal of Sustainable Built Environment, 2016, 5(2): 277-287. https://dx.doi.org/10.1016/j.ijsbe.2016.05.009 [4] Bazli M, Zhao X L, Jafari A, et al. Mechanical properties of pultruded GFRP profiles under seawater sea sand concrete environment coupled with UV radiation and moisture[J]. Construction and Building Materials, 2020(20): 258. https://dx.doi.org/10.1016/j.conbuildmat.2020.120369 [5] None. Sand, rarer than one thinks[J]. Environmental Development, 2014, 11: 208-218. https://dx.doi.org/10.1016/j.envdev.2014.04.001 [6] Engelsen C J, Sloot H A V D, Petkovic G. Long-term leaching from recycled concrete aggregates applied as sub-base material in road construction[J]. Science of The Total Environment, 2017, 587(1): 94-101. https://dx.doi.org/10.1016/j.scitotenv.2017.02.052 [7] C D P A, C S A Y B, C K C, et al. Study of the influence of seawater and sea sand on the mechanical and microstructural properties of concrete[J]. Journal of Building Engineering, 2021, 42: 103006. https://doi.org/10.1016/j.jobe.2021.103006 [8] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(01): 69-77. https://dx.doi.org/10.11896/cldb.20100075 [9] 李薛忠, 吴庆, 王刚, 等. 海水海砂混凝土中钢筋锈蚀的电化学特征[J]. 混凝土, 2020(7): 5. https://dx.doi.org/10.3969/j.issn.1002-3550.2020.0 [10] Xiao J, Qiang C, Nanni A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction & Building Materials, 2017, 155(nov. 30): 1101-1111. https://dx.doi.org/10.1016/j.conbuildmat.2017.08.130 [11] 郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370. https://dx.doi.org/10.1360/N972015-00829 [12] 王慧, 沈建锋, 张岗, 等. 海岛反渗透海水淡化技术发展现状与研究前景[J]. 广州化工, 2013, 41(11): 3. https://dx.doi.org/10.3969/j.issn.100 [13] 周昱程. 海砂, 淡化海砂对混凝土力学和耐久性能的影响综述[J]. 混凝土与水泥制品, 2023(3): 24-28. https://dx.doi.org/10.19761/j.1000-4637.2 [14] 李秀琳. 关于海砂的淡化处理方法分析[J]. 福建建材, 2020(5): 29-30, 42. [15] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10): 1-19. https://dx.doi.org/10.15951/j.tmgcxb.2019.10.001 [16] Teng J, Zhang S, Xiao Q, et al. Performance enhancement of bridges and other structures through the use of fibre-reinforced polymer(FRP)composites: some recent Hong Kong research [C]. In A. Chen, D. M. Frangopol & X. Ruan(Eds. ), Bridge Maintenance, Safety, Management and Life Extension-Proceedings of the 7th International Conference of Bridge Maintenance, Safety and Management, IABMAS 2014(pp. 73-81). Leiden, the Netherlands: Taylor and Francis/CRC Press/Balkema. [17] Dong Z, Wu G, Zhao X L, et al. Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars[J]. Construction and Building Materials, 2018, 19(20): 671-682. https://dx.doi.org/10.1016/j.conbuildmat.2018.10.166 [18] Yongmin Y, Zhaoheng L, Tongsheng Z, et al. Bond-Slip Behavior of Basalt Fiber Reinforced Polymer Bar in Concrete Subjected to Simulated Marine Environment: Effects of BFRP Bar Size, Corrosion Age, and Concrete Strength[J]. International Journal of Ploymer Science(2017-3-26), 2017: 1-9. https://dx.doi.org/10.1155/2017/5156189 [19] Li C, Gao D, Wang Y, et al. Effect of high temperature on the bond performance between basalt fibre reinforced polymer(BFRP)bars and concrete[J]. Construction & Building Materials, 2017, 141(15): 44-51. https://dx.doi.org/10.1016/j.conbuildmat.2017.02.125 [20] H. A. T. M. Saadatmanesh, Environmental effects on mechanical properties of wet lay-up fiber-reinforced polymer[J]. ACI Mater. J, 2010(3): 267-274. https://doi.org/10.14359/51663755 [21] A H Y K, A Y H P, A Y J Y, et al. Short-term durability test for GFRP rods under various environmental conditions[J]. Composite Structures, 2008, 83(1): 37-47. https://dx.doi.org/10.1016/j.compstruct.2007.03.005 [22] Chen Y, Davalos J F, Ray I, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures, 2007, 78(1): 101-111. https://dx.doi.org/10.1016/j.compstruct.2005.08.015 [23] Robert M, Benmokrane B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars[J]. Construction & Building Materials, 2013, 38(JAN. ): 274-284. https://dx.doi.org/10.1016/j.conbuildmat.2012.08.021 [24] Hepburn C, Adlen E, Boddington J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 11. https://doi.org/10.1038/s41586-019-1681-6 [25] 李林坤, 刘琦, 黄天勇, 等. 基于水泥基材料的CO2 矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 82-90. https://dx.doi.org/10.11896/cldb.20100295 [26] Xian X, Zhang D, Lin H. Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance[J]. Journal of CO2 Utilization, 2022, 56: 101861. https://doi.org/10.1016/j.jcou.2021.101861 [27] 史才军, 邹庆焱, 何富强. 二氧化碳养护混凝土的动力学研究[J]. 硅酸盐学报, 2010, 38(07): 1179-1184. https://dx.doi.org/10.14062/j.issn.0454-5648.2010.07.031 [28] 邵一心, MONKMAN Sean, TRAN Stanley. 混凝土基本组分吸收二氧化碳的能力(英文)[J]. 硅酸盐学报, 2010, 38(9): 1645-1651. https://dx.doi.org/2010,38(09):1645-1651 [29] Guo B, Chu G, Yu R, et al. Effects of sufficient carbonation on the strength and microstructure of CO2-cured concrete[J]. Journal of Building Engineering, 2023, 76. https://doi.org/10.1016/j.jobe.2023.107311 [30] Guo B, Yu R, Wang J, et al. Three-fold benefits of using CO2 to cure seawater sea sand concrete[J]. Construction and Building Materials, 2023, 401: 132868. https://doi.org/10.1016/j.conbuildmat.2023.132868 [31] Liu Z, Meng W. Fundamental understanding of carbonation curing and durability of carbonation-cured cementbased composites: A review[J]. Journal of CO2 utilization, 2021, 44: 101428. https://dx.doi.org/10.1016/j.jcou.2020.101428 [32] 曾海马, 刘志超, 王发洲. 碳化养护对大掺量钢渣砂浆的力学性能及显微结构的影响[J]. 硅酸盐学报, 2020, 48(11): 1801-1807. https://dx.doi.org/10.14062/j.issn.0454-5648.20200200 [33] 张丰, 莫立武, 邓敏. 碳化养护对钢渣混凝土强度和体积稳定性的影响[J]. 硅酸盐学报, 2016, 44(5): 640-646. https://dx.doi.org/10.14062/j.issn.0454-5648.2016.05.03 [34] 纤维增强复合材料工程应用技术标准. GB 50608-2020. [35] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. [36] 薛伟辰, 郑乔文, 杨雨. FRP筋混凝土梁正截面抗弯承载力设计研究[J]. 工程力学, 2009, 26(01): 79-85. [37] Xue W, Peng F, Zheng Q. Design Equations for Flexural Capacity of Concrete Beams Reinforced with Glass Fiber- Reinforced Polymer Bars[J]. JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2016, 20(3): 11. https://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000630 [38] Choi K K, Urgessa G, Taha M M R, et al. Quasi-Balanced Failure Approach for Evaluating Moment Capacity of FRP Under reinforced Concrete Beams[J]. Journal of Composites for Construction, 2008, 12(3): 236-245. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:3(236) [39] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(01): 134-150. https://dx.doi.org/10.14006/j.jzjgxb.2019.0349 [40] 欧进萍, 王勃, 何政. CFRP加筋混凝土梁的力学性能试验与分析[J]. 土木工程学报, 2005(12): 8-12. https://dx.doi.org/10.3321/j.issn:1000-131X.2005.12.002 [41] 彭飞, 薛伟辰. FRP筋混凝土T形和矩形截面梁抗弯承载力计算方法[J]. 工程力学, 2022, 39(02): 76-84. https://dx.doi.org/10.6052/j.issn.1000-4750.2020.12.0002 [42] 常福财. GFRP 筋海砂混凝土梁受弯性能试验研究[D]. 长春: 吉林建筑大学, 2021. https://dx.doi.org/10.13905/j.cnki.dwjz.2021.05.018 [43] Adam M A, Said M, Mahmoud A A, et al. Analyticaland experimental flexural behavior of concrete beamsreinforced with glass fiber reinforced polymers bars[J]. Construction and Building Materials, 2015, 84: 13. https://dx.doi.org/10.1016/j.conbuildmat.2015.03.057 [44] Hua Y, Yin S, Feng L. Bearing behavior and serviceability evaluation of seawater sea-sand concrete beamsreinforced with BFRP bars[J]. Construction and BuildingMaterials, 2020, 243: 13. https://dx.doi.org/10.1016/j.conbuildmat.2020.118294 [45] 赵嘉玮. FRP筋海水海砂混凝土梁的受弯性能研究和理论分析[D]. 呼和浩特: 内蒙古工业大学, 2015. https://dx.doi.org/10.7666/d.D781735 |
引用本文 | 郭冰冰, 路鹏超, 于琦, 等. 主动封存CO2 的FRP筋海水海砂混凝土梁正截面受弯承载力计算方法[J]. 工程材料与结构, 2024, 3(2): 25-37. |
Citation | GUO Bingbing, LU Pengchao, YU Qi, et al. Calculation for bearing capacity of FRP-SSC beams in positive section with active CO2 storage[J]. Engineering Materials and Structures, 2024, 3(2): 25-37. |