摘要 | 湖北宜昌黄花场剖面红花园组发育一套微生物礁, 微生物礁中保存有良好的微生物碳酸盐岩 (即凝块石) 。基于前人对华南早奥陶世生物礁中后生动物和后生动物群落造礁作用的研究, 本文通过野外实地考察及采样、室内磨片观察, 结合微生物礁的宏观、微观特征, 主要研究微生物礁中凝块石的形成机制。结果发现: 黄花场剖面红花园组微生物礁以凝块石为主, 伴随少量瓶筐石、石海绵、苔藓虫等后生动物化石, 代表了早奥陶世一种特殊的微生物礁类型, 即微生物礁以微生物碳酸盐岩为主, 局部有后生动物参与造礁, 是生物礁类型由微生物礁向后生动物礁过渡过程中一种特殊的生物礁类型。同时, 凝块石的内部发现有大量的钙化蓝细菌化石, 如葛万菌、束线菌及努亚藻, 较为直观的钙化蓝细菌表明了凝块石是由蓝细菌主导的微生物膜或微生物席的沉淀、粘聚及早期石化作用的产物, 表明了凝块石与蓝细菌主导的微生物席复杂钙化作用之间有着十分密切的关系。本文为华南早奥陶世微生物礁中凝块石的形成机制及微生物礁向后生动物礁转变的过渡时期的研究提供了一个较为典型的实例。 |
Abstract | A set of microbial reef is developed in the Honghuayuan Formation at the Huanghuachang section in the Yichang, Hubei Province. The microbial reef contains well-preserved thrombolites, one of the important types of microbial carbonate (i. e. thrombolite) . Based on the previous studies on the reef-building role of the metazoan and metazoan communities in Early Ordovician reefs in South China, this paper mainly studied the formation mechanism of thrombolite in microbial reefs by combining the macroscopic and microscopic characteristics of microbial reef through fieldwork and sampling and indoor mill observation. The results showed that the microbial reefs of the Honghuayuan Formation in the Huanghuachang section are dominated by thrombolite, accompanied by a small number of metazoan fossils, such as Calathium , lithistid sponge, bryozoan, etc. This reef represents a special type of microbial reefs in the Early Ordovician, that is, the microbial reefs are dominated by microbial carbonate, and locally metazoan is involved in the reef formation which is a special type of reef in the transition process from microbial reefs to metazoan reefs. At the same time, a large number of calcified cyanobacterial fossils are found in the thrombolite, such as Gerwanella, Subtifloria and Nuia, and the more intuitive calcified cyanobacteria showed that the thrombolites are the products of sedimentation, aggregation and early petrification of biofilm or mats dominated by cyanobacteria, indicating that there was a very close relationship between thrombolite and the complex calcification of microbial mats dominated by cyanobacteria. This study provides a typical example for the study of the formation mechanism of thrombolite in the Early Ordovician microbial reefs in South China and the transition period from microbial reefs to metazoan reefs. |
DOI | 10.48014/cesr.20241011001 |
文章类型 | 研究性论文 |
收稿日期 | 2024-10-11 |
接收日期 | 2024-10-21 |
出版日期 | 2024-12-28 |
关键词 | 早奥陶世, 微生物礁, 凝块石, 钙化蓝细菌化石, 黄花场剖面, 华南板块 |
Keywords | Early Ordovician, Microbial Reef, Thrombolite, Calcified Cyanobacteria Fossils, Huanghuachang Section, South China Plate |
作者 | 唐浩博 |
Author | TANG Haobo |
所在单位 | 中国地质大学 (北京) 地球科学与资源学院, 北京 100083 |
Company | School of Earth Science and Resources, China University of Geosciences (Beijing) , Beijing 100083, China |
浏览量 | 154 |
下载量 | 46 |
基金项目 | 本文得到了国家自然科学基金项目(41492090)“华北克拉通北缘寒武纪生物丘沉积组多样性研究”的资助 |
参考文献 | [1] Riding R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(1): 179-214. https://doi.org/10.1046/j.1365-3091.2000.00003.x [2] Riding R. Calcified cyanobacteria [J]. Encyclo-pedia of Earth Sciences Series, 2011, 211-223. https://doi.org/10.1007/978-1-4020-9212-1_63 [3] Lee J H, Riding R. Stromatolite-rimmed thro-mbolite columns and domes constructed by microstromatolites, calcimicrobes and sponges in late Cambrian biostromes, Texas, USA[J]. Sedimentology, 2023, 70(2): 293-334. https://doi.org/10.1111/sed.13048 [4] Aitken J D. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta[J]. Journal of Sedimentary Research, 1967, 37(4): 1163-1178. https://doi.org/10.1306/74D7185C-2B21-11D7-8648000102C1865D [5] Shapiro R S. A Comment on the Systematic Co-nfusion of Thrombolites[J]. Palaios, 2000, 15(2): 166-169. https://doi.org/10.1669/08831351(2000)015 [6] Adachi N. , Ezaki Y. , Liu J. , et al. Early Ordovician reef construction in Anhui Province, South China: a geobiological transition from microbial-to metazoan-dominant reefs[J]. Sedimentary Geology, 2009, 220(1-2): 1-11. https://doi.org/10.1016/j.sedgeo.2009.05.012 [7] Adachi N, Ezaki Y, Liu J B. Early Ordovician reef construction shift in reef construction from microbial to metazoan reefs[J]. Palaios, 2011, 26(1-2): 106-114. https://doi.org/10.2110/palo.2010.p10-097r [8] Li Q J, Li Y, Wang J P, et al. Early Ordovician lithistid sponge– Calathium reefs on the Yangtze Platform and their paleoceanographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 425(0): 84-96. 10. 1016/j. palaeo. 2015. 02. 034 [9] Webby B D. Patterns of Ordovician reef development[J]. Special Publications, 2002, 72: 129-179. https://doi.org/10.2110/pec.02.72.0129 [10] 朱忠德, 胡明毅, 刘秉理, 等. 中国早中奥陶世生物礁研究[M]. 北京: 地质出版社, 2006: 1-43. [11] Adachi N, Ezaki Y, Liu J B, et al. Cambrian t-hrough Ordovician reef transitions in North and South China: Changes in reef construction and background geobiological environments[J]. Pala-eogeography, Palaeoclimatology, Palaeoecology, 2023, 630: 111804. https://doi.org/10.1016/j.palaeo.2023.111804 [12] Zhang Y Y, Li Q J, Li Y, et al. Cambrian to Lower Ordovician reefs on the Yangtze Platform, South China Block, and their controlling factors[J]. Facies, 2016, 62(3): 1-18. https://doi.org/10.1007/s10347-016-0466-8 [13] Torsvik T, Cocks L. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation[J]. Early Palaeozoic Biogeography and Palaeogeography, 2013, 38: 5-24. https://doi.org/10.1144/M38.2 [14] Wang J P, Li Q J, Kershaw S, et al. Late Tre-madocian(Early Ordovician)reefs on the Yangtze Platform, South China, and their geobiological im-plications: a synthesis[J]. Journal of Palaeogeog-raphy, 2021, 10(2): 182-196. https://doi.org/10.1186/s42501-021-00086-0 [15] 周名魁, 王汝植, 李志明, 等. 中国南方奥陶-志留纪岩相古地理与成矿作用[M]. 北京: 地质出版社, 1993: 1-115. [16] ZHAN R B, JIN J S. Ordovician-Early Silurian(Llandovery)Stratigraphy and Palaeontology of t-he Upper Yangtze Platform, South China[M]. Beijing: Science Press, 2007: 1-169. [17] Wang X F, Stouge S, Erdtmann B. , et al. A proposed GSSP for the base of the Middle Ordovician Series: the Huanghuachang section, Yichang, China[J]. Episodes, 2005, 28(2): 105-117. https://doi.org/10.18814/epiiugs/2005/v28i2/004 [18] 张元动, 詹仁斌, 袁文伟, 等. 中国奥陶纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 250-270. 10. 19839/j. cnki. dcxzz. 2021. 0023 [19] Riding R. Classification of Microbial Carbonates[J]. Calcareous Algae and Stromatolites, 1991: 21-51. https://doi.org/10.1007/978-3-642-52335-9_2 [20] Adachi N, Liu J B, Ezaki Y. Early Ordovician reefs in South China(Chenjiahe section, Hubei Province): deciphering the early evolution of skeletal-dominated reefs[J]. Facies, 2013, 59: 451-466. https://doi.org/10.1007/s10347-012-0308-2 [21] 党志英, 沈玉林, 杨天洋, 金军, 赵勇. 黔西水城长兴期 晚期生物与环境突变响应: 基于古生物学和地球化学证据[J]. 古地理学报, 2023, 25(6): 1421-1436. https://doi.org/10.7605/gdlxb.2023.04.049 [22] 肖恩照, 王皓, 覃英伦, 等. 寒武纪芙蓉统均一石沉积组 构及环境特征———以河北涞源长山组为例[J]. 沉积 学报, 2020, 38(1): 76-90. https://doi.org/10.14027/j.issn.1000-0550.2019.025 [23] 梅冥相, LATIF K, 刘丽, 等. 光合作用生物膜建造的凝块: 来自于辽东半岛芙蓉统长山组凝块石生物丘中的一些证据[J]. 古地理学报, 2019, 21(2): 254-277. https://doi.org/10.7605.gdlxb.2019.02.015 [24] 王冬梅, 杨宇宁, 刘伟, 等. 黔北早奥陶世疑难钙藻化石Nuia形态分类与钙化机制[J]. 地质学报, 2023, 97(7): 2093-2110. https://doi.org/10.19762/j.cnki.dizhixuebao.2022050 [25] 王龙, LATIF K, RIAZ M, 等. 微生物碳酸盐岩的成因、分类以及问题与展望———来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023. https://doi.org/10.11867/j.issn.1001-8166.2018.10.1005 [26] 王龙. 太行山中南部及其邻区寒武系微生物碳酸盐岩主导的生物丘研究[D]. 北京: 中国地质大学(北京), 2019. https://doi.org/10.27493/d.cnki.gzdzy.2019.000145 [27] 秦仁月. 辽东半岛复州湾剖面寒武系馒头组核形石沉积特征[J]. 东北石油大学学报, 2020, 44(5): 46-58, 7-8. https://doi.org/10.3969/j.issn.2095-4107.2020.05.005 [28] 辛浩, 肖恩照, 王龙, 等. 肥城邓家庄剖面寒武系微生物碳酸盐岩沉积序列[J]. 沉积学报, 2020, 38(1): 64-75. https://doi.org/10.14027/j.issn.1000-0550.2019.071 [29] 柴凯旗, 秦仁月. 光合微生物膜钙化建造的底栖鲕粒———以辽西葫芦岛三道沟剖面张夏组鲕粒滩为例[J]. 东北石油大学学报, 2021, 45(3): 73-85, 9. https://doi.org/10.3969/j.issn.2095-4107.2021.03.008 [30] 梅冥相. 光合作用微生物席主导的寒武系苗岭统崮山组均一石:以山东省泗水县圣水峪剖面为例[J]. 古地理学报, 2021, 23(2): 335-358. https://doi.org/10.7605/gdlxb.2021.02.022 [31] Adachi Natsukawa H, Ezaki Y, et al. Cambrian Series 2(Stage 4)calcimicrobial reefs in Shand-ng Province, North China: Calcimicrobial diver-ity and contributionto reef construction[J]. Pa-aeogeography, Palaeoclimatology, Palaeoecology, 2023, 610: 111351. https://doi.org/10.1016/j.palaeo.2022.111351 [32] Xin H, Chen J T Gao B, et al. Spatio-temporal distributionof the Cambrian maceriate reefs across the NorthChina Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 614: 111429. https://doi.org/10.1016/j.palaeo.2023.111429 [33] 吴亚生. 生物岩的分类 [J]. 古地理学报, 2023, 25(3): 511-523. https://doi.org/10.7605/gdlxb.2023.03.018 [34] 曹瑞骥, 袁训来. 叠层石[M]. 合肥: 中国科学技术大学出版社, 2006: 1-383. [35] 梅冥相. 从凝块石概念的演变论微生物碳酸盐岩的研究进展[J]. 地质科技情报, 2007, 26(6): 1-9. [36] 张震武, 肖恩照, 覃英伦, 等. 莱芜雪野剖面寒武系苗岭统凝块石沉积特征[J]. 东北石油大学学报, 2019, 43(3): 67-77, 124. https://doi.org/10.3969/j.issn.2095-4107.2019.03.007 [37] Feldmann M, Mckenzie J A. Stromatolite-throm-boliteassociations in a modern environment, Le-e StockingIsland, Bahamas [J]. Palaios, 1998, 13(2): 201-212. https://doi.org/10.2307/3515490 [38] 辛浩, 肖恩照, 覃英伦, 等. 鲁西地区仙人洞剖面凤山组大型柱状叠层石沉积特征[J]. 东北石油大学学报, 2019, 43(3): 1-11. https://doi.org/10.3969/j.issn.2095-4107.2019.03.001 [39] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonateprecipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162. https://doi.org/10.1016/j.earscirev.2008.10.005 [40] Decho A. Microbial exopolymer secretions in ocean enviroments-their role(s)in food webs and marine processes[J]. Oceanography and Marine Biology, 1990, 28: 73-153. [41] Wilmeth D T, Corsetti F A, Bisenic N, et al. Punctuatedgrowth of microbial cones within early cambrian oncoids, bayan gol formation, western Mongolia(Article)[J]. Palaios, 2015, 30(12): 836-845. https://doi.org/10.2110/palo.2015.014 |
引用本文 | 唐浩博. 华南早奥陶世微生物礁中的凝块石: 以宜昌黄花场剖面为例[J]. 中国地球科学评论, 2024, 3(4): 196-206. |
Citation | TANG Haobo. Thrombolite in Early Ordovician microbial reef, South China: A case study of the Huanghuachang section in Yichang[J]. Chinese Earth Sciences Review, 2024, 3(4): 196-206. |