2024年5月2日 星期四
有氧反硝化菌强化生物滤池深度处理尾水
Deep Treatment of Tailwater by Aerobic Denitrifying Bacteria Enhanced Biofilter
摘要

部分污水处理厂排放的尾水中总氮的浓度较高, 容易引起受纳水体的富营养化。本研究通过生物强化技术将有氧反硝化菌与反硝化生物滤池相结合, 使用活性污泥中分离得到的有氧反硝化菌株W30、Z66构建复合菌剂, 强化反硝化生物滤池, 考察复合菌剂的强化脱氮效果, 并通过高通量测序技术对生物强化后系统内的微生物群落结构进行分析。结果表明, 经16S rDNA测序分析, 菌株W30为Pannonibacter 属, 菌株Z66为Pseudomonas属; 生物强化后的反硝化生物滤池挂膜启动速度快, 自然充氧条件下TN的去除率较曝气条件下提高了9. 36%; 通过碳氮比及水力停留时间的单因素试验, 确定C/N=4. 27, HRT=1. 0h为滤池的最优工况; 高通量测序结果进一步表明, Pannonibacter和Pseudomonas两菌属在反硝化生物滤池中的占比由运行初期的0. 49%和2. 56%下降至运行130天后的0. 073%和0. 18%, 与Thauera、Dechlorobacter、Exiguobacterium等菌属形成稳定的脱氮系统。

Abstract

The high concentration of total nitrogen in the tailwater discharged from some wastewater treatment plants is relatively high, which is easy to cause eutrophication in the receiving water bodies. In this study, the aerobic denitrifying bacteria were combined with denitrifying biofilter through bioreinforcement technology. The aerobic denitrifying bacteria strains W30 and Z66 isolated from activated sludge were used to construct a complex bacterial agent to strengthen the denitrifying biofilter, and the enhanced nitrogen removal effect of the complex bacterial agent was investigated, and the microbial community structure in the system after bioreinforcement was analyzed by high-throughput sequencing technology. The results showed that strain W30 was identified as Pannonibacter and strain Z66 as Pseudomonas by 16S rDNA sequencing analysis. The bioreinforced denitrification biofilter had a fast start-up rate of membrane hanging, and the removal rate of total nitrogen (TN) increased by 9. 36% under natural oxygenation compared with that under aeration; the single-factor test of carbon/nitrogen ratio (C/N) and hydraulic retention time (HRT) determined C/N=4. 27 and HRT=1. 0 h as the optimal working conditions of the filter cell; the highthroughput sequencing results further showed that the percentages of Pannonibacter and Pseudomonas in the denitrifying biofilter decreased from 0. 49% and 2. 56% at the beginning of operation to 0. 073% and 0. 18% after 130 days of operation. A stable denitrification system was formed with Thauera, Dechlorobacter, Exiguobacterium and other genera.  

DOI10.48014/cesr.20221209001
文章类型研究性论文
收稿日期2021-12-14
接收日期2023-03-07
出版日期2023-06-28
关键词有氧反硝化菌, 复合菌剂, 反硝化生物滤池, 尾水深度处理, 微生物多样性
KeywordsAerobic denitrifying bacteria, complex bacterial agent, denitrifying biofilters, deep tailwater treatment, microbial diversity
作者张懿婷1,2, 张楠1,4, 闫高俊1,5,*, 王晓辉2, 隋青烨3, 郭振3, 李建3
AuthorZHANG Yiting1,2, ZHANG Nan1,4, YAN Gaojun1,5,*, WANG Xiaohui2, SUI Qingye3, GUO Zhen3, LI Jian3
所在单位1. 滨州魏桥国科高等技术研究院, 滨州 256600
2. 河北科技大学环境科学与工程学院, 石家庄 050000
3. 内蒙古高速科技产业有限公司, 呼和浩特 010052
4. 中国科学院大学中丹学院, 北京 100049
5. 中国科学院大学资源与环境学院, 北京 100049
Company1. Institute of Advanced Technology, Binzhou Weiqiao Guoke, Binzhou 256600, China
2. College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
3. Inner Mongolia High-speed Technology Industry Co. LTD, Hohhot 010052, China
4. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
5. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
浏览量339
下载量133
基金项目教育部“产学合作协同育人”项目(BINTECH-KJZX-20220831-05);
内蒙古自治区交通运输科技项目(NJ-2021-19);
国家水体污染控制与治理科技重大专项(2018ZX07110)。
参考文献[1] CHENG Y F, LI G F, LIU Y Y, et al. Evaluating theeffects of Zn(II)on high-rate biogranule-based denitri-fication: Performance, microbial community and sludge characteristics[J]. Bioresource Technology, 2019, 279: 393-397.
https://doi.org/10.1016/j.biortech.2019.02.005
[2] GLASS C, SILVERSTEIN J. Denitrification of high-nitrate, high-salinity wastewater[J]. Water Research, 1999, 33(1): 223-229.
https://doi.org/10.1016/S0043-1354(98)00177-8
[3] 李磊, 周克梅, 王君娴, 等. 水力负荷对生物滞留池处理污水厂尾水的影响[J]. 中国给水排水, 2018, 34(23): 115-118.
https://dx.doi.org/10.19853/j.zgjsps.1000-4602.2018.23.023
[4] ROBERTSON L A, KUENEN J G. Thiosphaera pantotropha gen. nov. sp. nov. , a facultatively anaerobic, facultatively autotrophic sulphur bacterium[J]. Microbiology, 1983, 129(9): 2847-2855.
https://doi.org/10.1099/00221287-129-9-2847
[5] YANG L, WANG X H, CUI S, et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic-nitrificationaerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5[J]. Biore-Source Technology, 2019, 285: 121360.
https://doi.org/10.1016/j.biortech.2019.121360
[6] ZHANG Q L, LIU Y, AI G M, et al. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7[J]. Bioresource Technology, 2012, 108: 35-44.
https://doi.org/10.1016/j.biortech.2011.12.139
[7] LU Z, GAN L, LIN J, et al. Aerobic denitrification by Paracoccus sp. YF1 in the presence of Cu(II)[J]. Science of the Total Environment, 2019, 658: 80-86.
https://doi.org/10.1016/j.scitotenv.2018.12.225
[8] LIU Y, WANG Y, LI Y, et al. Nitrogen removal characteristics of heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis C16[J]. Chinese Journal of Chemical Engineering, 2015, 23(5): 827-834.
https://doi.org/10.1016/j.cjche.2014.04.005
[9] HUANG F, PAN L, HE Z, et al. Culturable heterotrophic nitrification-aerobic denitrification bacterial consortia with cooperative interactions for removing ammonia and nitrite nitrogen in mariculture effluents[J]. Aquaculture, 2020, 523: 735211.
https://doi.org/10.1016/j.aquaculture.2020.735211
[10] LIU C, XIE J, SONG M, et al. Nitrogen removal per- formance and microbial community changes in subsurface wastewater infiltration systems(SWISs)at low temperature with different bioaugmentation strategies[J]. Bioresource Technology, 2018, 250: 603-610.
https://doi.org/10.1016/j.biortech.2017.11.089
[11] 陈均利, 彭英湘, 罗沛, 等. 异养硝化-好氧反硝化菌的脱氮特性及其对猪场废水处理的研究[J]. 环境污染与防治, 2021, 43(03): 295-299, 303.
https://dx.doi.org/10.15985/j.cnki.1001-3865.2021.03.005
[12] 吴丽红, 李晓惠, 杨芳, 等. 蜡状芽孢杆菌生物强化反硝化脱氮研究[J]. 中国给水排水, 2016, 32(03): 89- 92, 96.
https://dx.doi.org/10.19853/j.zgjsps.1000-4602.2016.03.020
[13] 国家环保局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 第四版. 北京: 中国环境科学出版社, 2003: 201-271.
[14] Zhang N, Zhang Y, Bohu T, et al. Nitrogen Removal- Characteristics and Constraints of an Alphaproteobacteria with Potential for High Nitrogen Content Heterotrophic Nitrification-Aerobic Denitrification[J]. Microorganisms, 2022, 10(2): 235.
https://doi.org/10.3390/microorganisms10020235
[15] 王林, 张浩浩, 吴兴海, 等. 反硝化生物滤池深度脱氮中试运行效能及微生物菌群分析[J]. 同济大学学报(自然科学版), 2021, 49(12): 1727-1737.
https://dx.doi.org/10.11908/j.issn.0253-374x.21310
[16] 郑晓英, 乔露露, 王慰, 等. 碳源对反硝化生物滤池运行及微生物种群的影响[J]. 环境工程学报, 2018, 12(05): 1434-1442.
https://dx.doi.org/10.12030/j.cjee.201710046
[17] 张玲玲, 杨永强, 张权, 等. 组合型人工湿地对二级好氧单元出水的深度处理[J]. 环境工程学报, 2019, 13(07): 1592-1601.
https://dx.doi.org/10.12030/j.cjee.201811083
[18] GAO P, XU W, SONTAG P, et al. Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai[J], China Applied Microbiology and Biotechnology, 2016, 100(10): 4663-4673.
https://doi.org/10.1007/s00253-016-7307-0
[19] SUN H, WU Q, YU P, et al. Denitrification using excess activated sludge as carbon source: performance and the microbial community dynamics[J]. Bioresource Technology, 2017, 238: 624-632.
https://doi.org/10.1016/j.biortech.2017.04.105
[20] PENG C, GAO Y, FAN X, et al. Enhanced biofilm formation and denitrification in biofilters for advanced nitrogen removal by rhamnolipid addition[J]. Bioresource technology, 2019, 287: 121387.
https://doi.org/10.1016/j.biortech.2019.121387
[21] SAHINKAYA E, KILIC A, CALIMLIOGLU B, et al. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process[J]. Journal of hazardous materials, 2013, 262: 234-239.
https://doi.org/10.1016/j.jhazmat.2013.08.050
[22] SUN Y, DE VOS P, HEYLEN K. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis[J]. Bmc Genomics, 2016, 17(1): 1-11.
https://doi.org/10.1186/s12864-016-2382-2
[23] NAN Q, WANG C, WANG H, et al. Biochar drivesmicrobially- mediated rice production by increasing soil carbon[J]. Journal of hazardous materials, 2020, 387: 121680.
https://doi.org/10.1016/j.jhazmat.2019.121680
[24] CHAKRAVARTHY S S, PANDE S, KAPOOR A, et al. Comparison of denitrification between Paracoccus sp. and Diaphorobacter sp. [J]. Applied biochemistry and biotechnology, 2011, 165(1): 260-269.
https://doi.org/10.1007/s12010-011-9248-5
[25] ZHANG B, XU X, ZHU L. Structure and function of the microbial consortia of activated sludge in typical municipal wastewater treatment plants in winter[J]. Scientific reports, 2017, 7(1): 1-11.
https://doi.org/10.1038/s41598-017-17743-x
[26] XING W, LI J, LI P, et al. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities[J]. Journal of Environmental Sciences, 2018, 65: 262-270.
https://doi.org/10.1016/j.jes.2017.03.001
[27] HUR J, LEE B M, CHOI K S, et al. Tracking the spectroscopic and chromatographic changes of algal derived organic matter in a microbial fuel cell[J]. Environmental Science and Pollution Research, 2014, 21(3): 2230-2239.
https://doi.org/10.1007/s11356-013-2125-8
[28] LIU H, ZHU L, TIAN X, et al. Seasonal variation ofbacterial community in biological aerated filter for ammonia removal in drinking water treatment[J]. Water Research, 2017, 123: 668-677.
https://doi.org/10.1016/j.watres.2017.07.018
引用本文张懿婷, 张楠, 闫高俊, 等. 有氧反硝化菌强化生物滤池深度处理尾水[J]. 中国生态环境保护进展, 2023, 1(2): 10-21.
CitationZHANG Yiting, ZHANG Nan, YAN Gaojun, et al. Deep treatment of tailwater by aerobic denitrifying bacteria enhanced biofilter[J]. Progress in Chinese Eco-Environmental Protection, 2023, 1(2): 10-21.