参考文献
[1] 王欣悦, 丁思齐, 董素芬, 等. 混凝土可持续发展: 应对碳排放引起气候变化危机[J]. 工程材料与结构. 2022, 1(1): 1-14. https://doi.org/10.48014/ems.20220728001 [2] De Larrard F. Concrete mixture proportioning: a scientific approach[M]. CRC Press, 1999. https://doi.org/10.1201/9781482272055 [3] Han B, Sun S, Ding S, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 69-81. https://doi.org/10.1016/j.compsitesa.2014.12.002 [4] Lee B Y. Effect of titanium dioxide nanoparticles on early age and long term properties of cementitious materials [M]. Georgia Institute of Technology, 2012. [5] Lawrence P, Cyr M, Ringot E. Mineral admixtures in mortars: effect of inert materials on short-term hydration[ J]. Cement and Concrete Research, 2003, 33(12): 1939-1947. https://doi.org/10.1016/S0008-8846(03)00183-2 [6] D'Alessandro A, Ubertini F, Laflamme S, et al. Towards smart concrete for smart cities: Recent results and future application of strain-sensing nanocomposites[J]. Journal of Smart Cities, 2015, 1(1): 1-12. https://doi.org/10.18063/JSC.2015.01.002 [7] Zelic' J, Rušic' D, Veža D, et al. The role of silica fume in the kinetics and mechanisms during the early stage of cement hydration[J]. Cement and Concrete Research, 2000, 30(10): 1655-1662. https://doi.org/10.1016/S0008-8846(00)00374-4 [8] Feynman R. There’s plenty of room at the bottom[M]. Feynman and Computation. CRC Press, 2018: 63-76. [9] Ma P C, Siddiqui N A, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1345-1367. https://doi.org/10.1016/j.compsitesa.2010.07.003 [10] Li L, Yang F, Ye G J, et al. Quantum Hall effect in black phosphorus two-dimensional electron system[J]. Nature Nanotechnology, 2016, 11(7): 593-597. https://doi.org/10.1038/nnano.2016.42 [11] Colston S L, O'connor D, Barnes P, et al. Functional micro- concrete: The incorporation of zeolites and inorganic nano-particles into cement micro-structures[J]. Journal of Materials Science Letters, 2000, 19(12): 1085-1088. https://doi.org/10.1023/A:1006767809807 [12] Rahim A, Nair S R. Influence of nano-materials in high strength concrete[J]. Journal of Chemical and Pharmaceutical Sciences, 2016, 974: 15-21. [13] Salman M M, Eweed K M, Hameed A M. Influence of partial replacement TiO2 nanoparticles on the compressive and flexural strength of ordinary cement mortar [J]. Al-Nahrain Journal for Engineering Sciences, 2016, 19(2): 265-270. [14] Shekari A H, Razzaghi M S. Influence of nano particles on durability and mechanical properties of high performance concrete[J]. Procedia Engineering, 2011, 14: 3036-3041. https://doi.org/10.1016/j.proeng.2011.07.382 [15] Noorvand H, Ali AAA, Demirboga R, et al. Incorporation of nano TiO2 in black rice husk ash mortars[J]. Construction and Building Materials, 2013, 47: 1350-1361. https://doi.org/10.1016/j.conbuildmat.2013.06.066 [16] Han B, Li Z, Zhang L, et al. Reactive powder concrete reinforced with nano SiO2-coated TiO2 [J]. Construction and Building Materials, 2017, 148: 104-112. https://doi.org/10.1016/j.conbuildmat.2017.05.065 [17] Nazari A, Riahi S. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete[J]. Materials Science and Engineering: A, 2010, 528(2): 756-763. https://doi.org/10.1016/j.msea.2010.09.074 [18] Yang L, Jia Z, Zhang Y, et al. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes[J]. Cement and Concrete Composites, 2015, 57: 1-7. https://doi.org/10.1016/j.cemcocomp.2014.11.009 [19] Ma B, Li H, Mei J, et al. Effects of nano-TiO2 on the toughness and durability of cement-based material[J]. Advances in Materials Science and Engineering, 2015: 583106. https://doi.org/10.1155/2015/583106 [20] Soleymani F. Assessments of the effects of limewater on water permeability of TiO2 nanoparticles binary blended palm oil clinker aggregate-based concrete[J]. Journal of American Science, 2012, 8(5): 698-702. [21] Guerrini G L, Peccati E. Photocatalytic cementitious roads for depollution[C]. International RILEM Symposium on Photocatalysis, Environment and Construction Materials, 2007: 179-186. [22] Demeestere K, Dewulf J, De Witte B, et al. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2[J]. Building and Environment, 2008, 43(4): 406-414. https://doi.org/10.1016/j.buildenv.2007.01.016 [23] Li Z, Dong S, Ashour A, et al. On the incorporation of nano TiO2 to inhibit concrete deterioration in the marine environment[J]. Nanotechnology, 2022, 33(13): 135704. https://doi.org/10.1088/1361-6528/ac3f55 [24] 熊国宣. 水泥基复合吸波材料[D]. 南京: 南京工业大学, 2005. https://doi.org/10.7666/d.w014742 [25] Han B, Yu X, Ou J. Self-sensing concrete in smart structures[M]. Butterworth-Heinemann, 2014. https://doi.org/10.1016/B978-0-12-800517-0.00001-0 [26] 富永祥, 林广义, 汪传生. 超声分散制备环氧树脂/纳米SiO2复合材料研究[J]. 工程塑料应用, 2009, 37(05): 5-8. https://doi.org/10.3969/j.issn.1001-3539.2009.05.002 [27] Li Z, Han B, Yu X, et al. Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete[J]. Materials Research Express, 2017, 4(9): 095008. https://doi.org/10.1088/2053-1591/aa87db [28] Lee B Y, Jayapalan A R, Kurtis K E. Effects of nano- TiO2 on properties of cement-based materials[J]. Magazine of Concrete Research, 2013, 65(21): 1293-1302. https://doi.org/ doi:10.1680/macr.13.00131 [29] Mohseni E, Mehrinejad M, Azar H, et al. Effectiveness of nano-TiO2 and fly ash in concrete[J]. Tech. J. Eng. Appl. Sci, 2015, 5: 101-107. [30] Chen J, Kou S, Poon C. Hydration and properties of nano-TiO2 blended cement composites[J]. Cement and Concrete Composites, 2012, 34(5): 642-649. https://doi.org/10.1016/j.cemconcomp.2012.02.009 [31] Salemi N, Behfarnia K, Zaree S. Effect of nanoparticles on frost durability of concrete[J]. Asian Journal of Civil Engineering, 2014: 411-420. [32] Zhang R, Cheng X, Hou P, et al. Influences of nano- TiO2 on the properties of cement-based materials: Hydration and drying shrinkage[J]. Construction and Building Materials, 2015, 81: 35-41. https://doi.org/10.1016/j.conbuildmat.2015.02.003 [33] Mohseni E, Naseri F, Amjadi R, et al. Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash[J]. Construction and Building Materials, 2016, 114: 656-664. https://doi.org/10.1016/j.conbuildmat.2016.03.13 [34] Feng L C, Gong C W, Wu Y P, et al. The study on mechanical properties and microstructure of cement paste with nano-TiO2 [C]. Advanced Materials Research, 2013: 477-481. https://doi.org/10.4028/www.scientific.net/AMR.629.477 [35] Behfarnia K, Azarkeivan A, Keivan A. The effects of TiO2 and ZnO nanoparticles on physical and mechanical properties of normal concrete[J]. Asian Journal of Civil Engineering, , 2013: 517-531. [36] Kurihara R, Maruyama I. Influences of nano-TiO2 particles on alteration of microstructure of hardened cement[ J]. Technical Paper, 2016, 38: 219-224. [37] Gartner E M, Jennings H M. Thermodynamics of calcium silicate hydrates and their solutions[J]. Journal of the American Ceramic Society, 1987, 70(10): 743-749. https://10.1111/j.1151-2916.1987.tb04874.x [38] Damidot D, Nonat A. C3S hydration in diluted and stirred suspensions:(I)study of the two kinetic steps[J]. Advances in Cement Research, 1994, 6(21): 27-35. https://doi.org/10.1680/adcr.1994.6.21.27 [39] Barret P, Bertrandie D. Fundamental hydration kinetic features of the major cement constituents: Ca3SiO5 and βCa2SiO4[J]. Journal De Chimie Physique, 1986, 83: 765-775. https://doi.org/10.1051/jcp/1986830765 [40] Wang J, Han B, Li Z, et al. Effect investigation of nanofillers on CSH gel structure with Si NMR[J]. Journal of Materials in Civil Engineering, 2019, 31(1): 04018352. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0002559 [41] Han B, Zhang L, Zeng S, et al. Nano-core effect in nanoengineered cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 100-109. https://doi.org/10.1016/j.compositesa.2017.01.008 [42] Collins F, Sanjayan J G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6 [43] Fawzy Y. Effect of nano-titanium on properties of concrete made with various cement types[J]. American Journal of Science, 2016, 12(4): 116-126. [44] Wang J, Dong S, Zhou C, et al. Investigating pore structure of nano-engineered concrete with low-field nuclear magnetic resonance[J]. Journal of Materials Science, 2021, 56: 243-259. https://doi.org/10.1007/s10853-020-05268-0 [45] Jayapalan A, Lee B, Kurtis K. Effect of nano-sized titanium dioxide on early age hydration of Portland cement, Nanotechnology in construction 3: Springer, 2009: 267-273. https://doi.org/10.1007/978-3-642-00980-8_35 [46] Li N, Wang W, Ye J, et al. Short age direct shear behavior of seashore soft soil reinforced by cement and nanotitanium dioxide[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(3): 1087-1093. [47] Liu J, Li Q, Xu S. Influence of nanoparticles on fluidity and mechanical properties of cement mortar[J]. Construction and Building Materials, 2015, 101: 892-901. https://doi.org/10.1016/j.conbuildmat.2015.10.149 [48] Zhao S, Sun W. Nano-mechanical behavior of a green ultra-high performance concrete[J]. Construction and Building Materials, 2014, 63: 150-160. https://doi.org/10.1016/j.conbuildmat.2014.04.029 [49] Folli A, Pochard I, Nonat A, et al. Engineering photocatalytic cements: understanding TiO2 surface chemistry to control and modulate photocatalytic performances[ J]. Journal of the American Ceramic Society, 2010, 93(10): 3360-3369. https://doi.org/10.1111/j.1551-2916.2010.03838.x [50] Lothenbach B, Scrivener K, Hooton R. Supplementary cementitious materials[J]. Cement and Concrete Research, 2011, 41(12): 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001 [51] Hubler M H, Thomas J J, Jennings H M. Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste[J]. Cement and Concrete Research, 2011, 41(8): 842-846. https://doi.org/10.1016/j.cemconres.2011.04.002 [52] Jiang S, Shan B, Ouyang J, et al. Rheological properties of cementitious composites with nano/fiber fillers[J]. Construction and Building Materials, 2018, 158: 786-800. https://doi.org/10.1016/j.conbuildmat.2017.10.072 [53] Senff L, Hotza D, Lucas S, et al. Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars[J]. Materials Science and Engineering: A, 2012, 532: 354-361. https://doi.org/10.1016/j.msea.2011.10.102 [54] Talero R, Pedrajas C, González M, et al. Role of the filler on Portland cement hydration at very early ages: Rheological behaviour of their fresh cement pastes[J]. Construction and building Materials, 2017, 151: 939-949. https://doi.org/10.1016/j.conbuildmat.2017.06.006 [55] Varhen C, Dilonardo I, de Oliveira Romano, et al. Effect of the substitution of cement by limestone filler on the rheological behaviour and shrinkage of microconcretes[J]. Construction and Building Materials, 2016, 125: 375-386. https://doi.org/10.1016/j.conbuildmat.2016.08.062 [56] Gunnelius K R, Lundin T C, Rosenholm J B, et al. Rheological characterization of cement pastes with functional filler particles[J]. Cement and Concrete Research, 2014, 65: 1-7. https://doi.org/10.1016/j.cemconres.2014.06.010 [57] Li H, Ding S, Zhang L, et al. Effects of particle size, crystal phase and surface treatment of nano-TiO2 on the rheological parameters of cement paste[J]. Construction and Building Materials, 2020, 239: 117897. https://doi.org/10.1016/j.conbuildmat.2019.117897 [58] Zapata L, Portela G, Suárez O, et al. Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO2 additions[J]. Construction and Building Materials, 2013, 41: 708-716. https://doi.org/10.1016/j.conbuildmat.2012.12.025 [59] Mukharjee B B, Barai S V. Influence of nano-silica on the properties of recycled aggregate concrete[J]. Construction and Building Materials, 2014, 55: 29-37. https://doi.org/10.1016/j.conbuildmat.2014.01.003 [60] Meng T, Yu Y, Qian X, et al. Effect of nano-TiO2 on the mechanical properties of cement mortar[J]. Construction and Building Materials, 2012, 29: 241-245. https://doi.org/10.1016/j.conbuildmat.2011.10.047 [61] Liu Q, Jiang Q, Huang M, et al. The fresh and hardened properties of 3D printing cement-base materials with self-cleaning nano-TiO2: An exploratory study[J]. Journal of Cleaner Production, 2022, 379: 134804. https://doi.org/10.1016/j.jclepro.2022.134804 [62] 张茂花. 纳米路面混凝土的全寿命性能[D]. 哈尔滨: 哈尔滨工业大学, 2007. https://doi.org/10.7666/d.D271875 [63] Birgisson B, Mukhopadhyay A K, Geary G, et al. Nanotechnology in concrete materials: a synopsis[J]. Transportation Research Circular, 2012(E-C170). [64] Mohseni E, Miyandehi B M, Yang J, et al. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of selfcompacting mortar containing fly ash[J]. Construction and Building Materials, 2015, 84: 331-340. https://doi.org/10.1016/j.conbuildmat.2015.03.006 [65] Sanchez F, Sobolev K. Nanotechnology in concrete-a review[ J]. Construction and Building Materials, 2010, 24(11): 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014 [66] Nazari A, Riahi S, Riahi S, et al. Improvement the mechanical properties of the cementitious composite by using TiO2 nanoparticles[J]. Journal of American Science, 2010, 6(4): 98-101. [67] Han B, Wang Y, Dong S, et al. Smart concretes and structures: A review[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(11): 1303-1345. https://doi.org/10.1177/1045389x15586452 [68] Jiang S, Zhou D, Zhang L, et al. Comparison of compressive strength and electrical resistivity of cementitious composites with different nano-and micro-fillers[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 60-68. https://doi.org/10.1016/j.acme.2017.05.010 [69] Wang J, Dong S, Wang D, et al. Enhanced impact properties of concrete modified with nanofiller inclusions[J]. Journal of Materials in Civil Engineering, 2019, 31(5): 04019030. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0002659 [70] Li L, Zheng Q, Wang X, et al. Modifying fatigue performance of reactive powder concrete through adding pozzolanic nanofillers[J]. International Journal of Fatigue, 2022, 156: 106681. https://doi.org/10.1016/j.ijfatigue.2021.106681 [71] Aly T, Sanjayan J G. Mechanism of early age shrinkage of concretes[J]. Materials and Structures, 2009, 42(4): 461-468. https://doi.org/10.1617/s11527-008-9394-6 [72] Palacios M, Puertas F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes[J]. Cement and Concrete Research, 2007, 37(5): 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021 [73] Hasebe M, Edahiro H. Experimental studies on strength, durability and antifouling properties of concrete using TiO2 as admixture[J]. Cement Science and Concrete Technology, 2013, 67(1): 507-513. https://doi.org/10.14250/cement.67.507 [74] Collins F, Sanjayan J G. Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate[J]. Cement and Concrete Research, 1999, 29(4): 607-610. https://doi.org/10.1016/S0008-8846(98)00203-8 [75] 杨文萃. 无机盐对混凝土孔结构和抗冻性影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. https://doi.org/10.7666/d.D257682 [76] Bui D, Hu J, Stroeven P. Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete[J]. Cement and Concrete Composites, 2005, 27(3): 357-366. https://doi.org/10.1016/j.cemconcomp.2004.05.002 [77] Naganna S R, Jayakesh K, Anand V. Nano-TiO2 particles: a photocatalytic admixture to amp up the performance efficiency of cementitious composites[J]. Sādhanā, 2020, 45(1): 1-13. https://doi.org/10.1007/s12046-020-01515-x [78] Tattersall G, Baker P. An investigation on the effect of vibration on the workability of fresh concrete using a vertical pipe apparatus[J]. Magazine of Concrete Research, 1989, 41(146): 3-9. https://doi.org/10.1680/macr.1989.41.146.3 [79] Wee T, Suryavanshi A K, Tin S. Evaluation of rapid chloride permeability test(RCPT)results for concrete containing mineral admixtures[J]. Materials Journal, 2000, 97(2): 221-232. https://doi.org/10.1016/S0886-7798(00)00048-1 [80] Nochaiya T, Chaipanich A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials[J]. Applied Surface Science, 2011, 257(6): 1941-1945. https://doi.org/10.1016/j.apsusc.2010.09.030 [81] Standard specification for compressive strength of mortars. ASTM C-1202. 2007. [82] Zhang L, Ding S, Sun S, et al. Nano-scale behavior and nano-modification of cement and concrete materials, Advanced research on nanotechnology for civil engineering applications[M]. 2016: 28-79. https://doi.org/10.4018/978-1-5225-0344-6.ch002 [83] Wang D, Zhang W, Ruan Y, et al. Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete[ J]. Construction and Building Materials, 2018, 189: 487-497. https://doi.org/10.1016/j.conbuildmat.2018.09.041 [84] He X, Shi X. Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials[ J]. Transportation Research Record, 2008, 2070(1): 13-21. https://doi.org/10.3141/2070-03 [85] Feng D, Xie N, Gong C, et al. Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective[ J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11575-11582. https://doi.org/10.1021/ie4011595 [86] 陈波, 王伟鱼, 丰雨秋, 等. 蒸养条件下矿粉、粉煤灰对高铁相硅酸盐水泥基材料毛细孔和抗侵蚀性能的影响[J]. 硅酸盐通报, 2023, 42(01): 162-169. https://www.doi.org/10.16552/j.cnki.issn1001-1625.2023.01.005 [87] Daniyal M, Akhtar S, Azam A. Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments[J]. Journal of Materials Research and Technology, 2019, 8(6): 6158-6172. https://doi.org/10.1016/j.jmrt.2019.10.010 [88] Han B, Zhang L, Ou J. Smart and multifunctional concrete toward sustainable infrastructures[M]. Springer, 2017. https://doi.org/10.1007/978-981-10-4349-9 [89] Guo M Z, Ling T C, Poon C S. Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: Influence of coating and weathering conditions[J]. Cement and Concrete Composites, 2013, 36: 101-108. https://doi.org/10.1016/j.cemconcomp.2012.08.006 [90] Fujishima A, Zhang X. Titanium dioxide photocatalysis: present situation and future approaches[J]. Comptes Rendus Chimie, 2006, 9(5-6): 750-760. https://doi.org/10.1016/j.crci.2005.02.055 [91] Tung W S, Daoud W A. Self-cleaning fibers via nanotechnology: a virtual reality[J]. Journal of Materials Chemistry, 2011, 21(22): 7858-7869. https://doi.org/10.1039/c0jm03856c [92] Liu B, Wu H, Parkin I P. New insights into the fundamental principle of semiconductor photocatalysis[J]. ACS Omega, 2020, 5(24): 14847-14856. https://doi.org/10.1021/acsomega.0c02145 [93] Shen S, Burton M, Jobson B, et al. Pervious concrete with titanium dioxide as a photocatalyst compound for a greener urban road environment[J]. Construction and Building Materials, 2012, 35: 874-883. https://doi.org/10.1016/j.conbuildmat.2012.04.097 [94] Senff L, Ascensao G, Hotza D, et al. Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars [J]. Energy and Buildings, 2016, 127: 980-990. https://doi.org/10.1016/j.enbuild.2016.06.048 [95] Chen J, Poon C S. Photocatalytic construction and building materials: from fundamentals to applications[J]. Building and Environment, 2009, 44(9): 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002 [96] Guo M Z, Maury-Ramirez A, Poon C S. Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application[J]. Journal of Cleaner Production, 2016, 112: 3583-3588. https://doi.org/10.1016/j.jclepro.2015.10.079 [97] Kamitani K, Murata Y, Tawara H, et al. Air purifying pavement: development of photocatalytic concrete blocks[C]. International Symposium on Cement and Concrete, 1998: 751-755. [98] Hunger M, Brouwers H, Ballari M D L M. Photocatalytic degradation ability of cementitious materials: A modeling approach[C]. Proceedings of 1st International Conference on Microstructure related Durability of Cementitious Composites, Nanjing, China, 2008. [99] Poon C S, Cheung E. NO removal efficiency of photocatalytic paving blocks prepared with recycled materials[J]. Construction and Building Materials, 2007, 21(8): 1746-1753. https://doi.org/10.1016/j.conbuildmat.2006.05.018 [100] Hu C, Lan Y, Qu J, et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria[J]. Journal of Physical Chemistry B, 2006, 110(9): 4066-4072. https://doi.org/10.1021/jp0564400 [101] Boonen E, Beeldens A. Recent photocatalytic applications for air purification in Belgium [J]. Coatings, 2014, 4(3): 553-573. https://doi.org/10.3390/coatings4030553 [102] Linkous C A, Carter G J, Locuson D B, et al. Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalyst modifications[J]. Environmental Science & Technology, 2000, 34(22): 4754-4758. https://doi.org/10.1021/es001080+ [103] Wang R, Sakai N, Fujishima A, et al. Studies of surface wettability conversion on TiO2 single-crystal surfaces[ J]. Journal of Physical Chemistry B, 1999, 103(12): 2188-2194. https://doi.org/10.1021/jp983386x [104] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431-432. https://doi.org/10.1038/41233 [105] Yu C M. Deactivation and regeneration of environmentally exposed titanium dioxide(TiO2)based products [M]. Department of Chemistry, Chinese University of Hong Kong, 2003. [106] Guo M Z, Poon C S. An effective way to incorporate nano-TiO2 in photocatalytic cementitious materials[J]. The Third International Conference Sustainable Construction Materials and Technologies, 1-10. 2013. https://doi.org/10.13140/2.1.1825.4728 [107] Lackhoff M, Prieto X, Nestle N, et al. Photocatalytic activity of semiconductor-modified cement—influence of semiconductor type and cement ageing[J]. Applied Catalysis B: Environmental, 2003, 43(3): 205-216. https://doi.org/10.1016/s0926-3373(02)00303-x [108] Macphee D, Folli A. Photocatalytic concretes—The interface between photocatalysis and cement chemistry[J]. Cement and Concrete Research, 2016, 85: 48-54. https://doi.org/10.1016/j.cemconres.2016.03.007 [109] O'regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740. https://doi.org/10.1038/353737a0 [110] 熊国宣, 邓敏, 徐玲玲, 等. 掺纳米TiO2的水泥基复合材料的性能[J]. 硅酸盐学报, 2006, 34(9): 1158-1161. https://doi.org/10.3321/j.issn:0454-5648.2006.09.028 [111] Han B, Ding S, Yu X. Intrinsic self-sensing concrete and structures: A review[J]. Measurement, 2015, 59: 110-128. https://doi.org/10.1016/j.measurement.2014.09.048 [112] Choi I, Lee D. Radar absorbing composite structures dispersed with nano-conductive particles[J]. Composite Structures, 2015, 122: 23-30. https://doi.org/10.1016/j.compstruct.2014.11.040 [113] Qiu J, Lan L, Zhang H, et al. Effect of titanium dioxide on microwave absorption properties of barium ferrite[J]. Journal of Alloys and Compounds, 2008, 453(1- 2): 261-264. https://doi.org/10.1016/j.jallcom.2006.11.059 [114] 平兵. 吸波功能集料混凝土的制备与性能研究[D]. 武汉: 武汉理工大学, 2015. https://doi.org/10.7666/d.D794703 [115] Lu L, He Y, Ping B, et al. TiO2 containing electromagnetic wave absorbing aggregate and its application in concrete[J]. Construction and Building Materials, 2017, 134: 602-609. https://doi.org/10.1016/j.conbuildmat.2016.12.153 [116] Li Z, Dong S, Wang X, et al. Electromagnetic wave-absorbing property and mechanism of cementitious composites with different types of nano titanium dioxide[J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020073. https://doi.org/10.1061/(asce)mt.1943-5533.0003133 [117] Xiao H. Piezoresistivity of cement-based composite filled with nanophase materials and self-sensing smart structural system[J]. Harbin Institute of Technology, 2006. [118] Wang J, Ding S, Han B, et al. Self-healing properties of reactive powder concrete with nanofillers[J]. Smart Materials and Structures, 2018, 27(11): 115033. https://doi.org/10.1088/1361-665X/aae59f [119] 中华人民共和国国家标准GB25577-2010. 食品添加剂二氧化钛[S]. [120] 贺飞, 唐怀军, 赵文宽, 等. 纳米TiO2光催化剂负载技术研究[J]. 环境污染治理技术与设备, 2001, 02: 47-58. [121] Mathur A, Bhuvaneshwari M, Babu S, et al. The effect of TiO2 nanoparticles on sulfate-reducing bacteria and their consortium under anaerobic conditions[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3741-3748. https://doi.org/10.1016/j.jece.2017.07.032 [122] 陈惜燕, 王利国, 李玲, 等. 纳米材料二氧化钛对胶孢炭疽菌的抑制作用[J]. 中国生物防治, 2005, 04: 63-66. https://doi.org/10.3321/j.issn:1005-9261.2005.04.014 [123] Kim S, An Y. Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis[J]. Applied Microbiology Biotechnology, 2012, 95(1): 243-253. 10. https://doi.org/1007/s00253-012-4153-6 [124] Kangwansupamonkon W, Lauruengtana V, Surassmo S, et al. Antibacterial effect of apatite-coated titanium dioxide for textiles applications[J]. Nanomedicine, 2009, 5(2): 240-249. https://doi.org/10.1016/j.nano.2008.09.004 [125] Gupta K, Singh R, Pandey A, et al. Photocatalytic antibacterial performance of TiO2 and ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli[J]. Beilstein Journal of Nanotechnology, 2013, 4(1): 345-351. https://doi.org/10.3762/bjnano.4.40 [126] Babaei E, Dehnad A, Hajizadeh N, et al. A study on inhibitory effects of titanium dioxide nanoparticles and its photocatalytic type on Staphylococcus aureus, Escherichia coli and Aspergillus flavus[J]. Applied Food Biotechnology, 2016, 3: 115-123. [127] Adams L, Lyon D, Alvarez P. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19): 3527-3532. https://doi.org/10.1016/j.watres.2006.08.004 [128] Maness P, Smolinski S, Blake D, et al. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism[J]. Applied and Environmental Microbiology, 1999, 65(9): 4094-4098. https://doi.org/10.1128/AEM.65.9.4094-4098.1999 [129] Li H, Qiang C, Feng B, et al. Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition[J]. Applied Surface Science, 2013, 284(11): 179-183. https://doi.org/10.1016/j.apsusc.2013.07.076 [130] Szczawinski J, Tomaszewski H, Jackowska-Tracz A, et al. Effect of UV radiation on survival of salmonella enteritidis on the surface of ceramic tiles coated with TiO2[J]. Bulletin-Veterinary Institute in Pulawy, 2010, 54(4): 479-483. [131] Ibáñeza J, Litter M, Pizarro R. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: Comparative study with other Gram(-)bacteria[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 81-85. https://doi.org/10.1016/S1010-6030(03)00074-1 [132] Venieri D, Fraggedaki A, Kostadima M, et al. Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance[J]. Applied Catalysis B: Environmental, 2014, 154-155: 93-101. https://doi.org/10.1016/j.apcatb.2014.02.007 [133] Tong T, Sheree A, Wu J, et al. Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria[ J]. Environmental Science and Technology, 2013, 47(21): 12486-12495. https://doi.org/10.1021/es403079h [134] Gajjar P, Pettee B, Britt D, et al. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440[J]. Journal of Biological Engineering, 2009, 3(1): 1-13. https://doi.org/10.1186/1754-1611-3-9 [135] Maury-Ramirez A, De Muynck W, Stevens R, et al. Titanium dioxide based strategies to prevent algal fouling on cementitious materials[J]. Cement and Concrete Composites, 2013, 36: 93-100. https://doi.org/10.1016/j.cemc-comp.2012.08.030 [136] Hu C, Guo J, Qu J, et al. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation[J]. Langmuir, 2007, 23: 4982-4987. https://doi.org/10.1016/j.cemconcomp.2012.08.030 [137] Liou J, Chang H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria[J]. Archivum Immunologiae et Therapiae Experimentalis, 2012, 60(4): 267-275. https://doi.org/10.1007/s00005-012-0178-x [138] Mathur A, Bhuvaneshwari M, Babu S, et al. The effect of TiO2 nanoparticles on sulfate-reducing bacteria and their consortium under anaerobic conditions[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3741-3748. https://doi.org/10.1016/j.jece.2017.07.032 [139] Kirthika S K, Goel G, Matthews A, et al. Review of the untapped potentials of antimicrobial materials in the construction sector[J]. Progress in Materials Science, 2022: 101065. https://doi.org/10.1016/j.pmatsci.2022.101065 [140] Vishwakarma V, Sudha U, Ramachandran D, et al. Enhancing antimicrobial properties of fly ash mortars specimens through nanophase modification[J]. Materials Today: Proceedings, 2016, 3(6): 1389-1397. https://doi.org/10.1016/j.matpr.2016.04.020.L [141] Li Z, Ding S, Kong L, et al. Nano TiO2-engineered anti- corrosion concrete for sewage system[J]. Journal of Cleaner Production, 2022, 337: 130508. https://doi.org/10.1016/j.jclepro.2022.130508 [142] Jędrzejczak P, Ławniczak Ł, S'losarczyk A, et al. Physicomechanical and antimicrobial characteristics of cement composites with selected nano-sized oxides and binary oxide systems[J]. Materials, 2022, 15(2): 661. https://doi.org/10.3390/ma15020661 [143] Praveenkumar T R, Vijayalakshmi M M, Meddah M S. Strengths and durability performances of blended cement concrete with TiO2 nanoparticles and rice husk ash[J]. Construction and Building Materials, 2019, 217: 343-351. https://doi.org/10.1016/j.conbuildmat.2019.05.045 [144] Li Q, Mahendra S, Lyon D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications[J]. Water Research, 2008, 42(18): 4591-4602. https://doi.org/10.1016/j.watres.2008.08.015 [145] Jenkins J, Mantell J, Neal C, et al. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress[J]. Nature Communications, 2020, 11: 1626. https://wwwnature.53yu.com/articles/s41467-020-15471-x [146] Olivi M, Zanni E, Bellis G, et al. Inhibition of microbial growth by carbon nanotube networks[J]. Nanoscale, 2013, 5: 9023-9029. [147] Seil J, Webster T. Antimicrobial applications of nanotechnology: Methods and literature[J]. International Journal of Nanomedicine, 2012, 7: 2767-2781. https://doi.org/10.2147/IJN.S24805 [148] Nowlin K, Boseman A, Covell A, et al. Adhesion-dependent rupturing of saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces[J]. Journal of the Royal Society Interface, 2015, 12: 1-12. https://doi.org/10.1098/rsif.2014.0999 [149] Bandara C, Singh S, Afara I, et al. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli[J]. ACS Applied Materials and Interfaces, 2017, 9(8): 6746-6760. https://doi.org/10.1021/acsami.6b13666 [150] Noeiaghaei T, Mukherjee A, Dhami N, et al. Biogenic deterioration of concrete and its mitigation technologies[ J]. Construction and Building Materials, 2017, 149: 575-586. https://doi.org/10.1016/j.conbuildmat.2017.05.144 [151] Batchelor-McAuley C, Tschulik K, Neumann C, et al. Why are silver nanoparticles more toxic than bulk sil- ver? Towards understanding the dissolution and toxicity of silver nanoparticles[J]. International Journal of Electrochemical Science, 2014, 9(3): 1132-1138. [152] Gammampila R, Mendis P, Ngo T, et al. Application of nanomaterials in the sustainable built environment[J]. International Conference on Sustainable Built Environment(ICSBE-2010)Kandy, 13-14 December 2010. http://dl.lib.mrt.ac.lk/handle/123/9238 [153] Cassar L. Photocatalysis of cementitious materials: clean buildings and clean air[J]. Mrs Bulletin, 2004, 29(5): 328-331. https://doi.org/10.1557/mrs2004.99 [154] Irie H, Sunada K, Hashimoto K. Recent developments in TiO2 photocatalysis: novel applications to interior ecology materials and energy saving systems[J]. Electrochemistry, 2004, 72(12): 807-812. https://doi.org/10.5796/electrochemistry.72.807 [155] He J, Hoyano A. A numerical simulation method for analyzing the thermal improvement effect of super-hydrophilic photocatalyst-coated building surfaces with water film on the urban/built environment[J]. Energy and Buildings, 2008, 40(6): 968-978. https://doi.org/10.1016/j.enbuild.2007.08.003 [156] Ohko Y, Tryk D A, Hashimoto K, et al. Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination[J]. Journal of Physical Chemistry B, 1998, 102(15): 2699-2704. https://doi.org/10.1021/jp9732524 [157] Maggos T, Plassais A, Bartzis J, et al. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels[J]. Environmental Monitoring and Assessment, 2008, 136(1): 35-44. https://doi.org/10.1007/s10661-007-9722-2 [158] Ding S, Wang J, Dong S, et al. Developing multifunctional/ smart civil engineering materials to fight viruses[ J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 678-690. https://doi.org/10.1021/acssuschemeng.1c07642 [159] Qiu L, Dong S, Ashour A, et al. Antimicrobial concrete for smart and durable infrastructures: A review[J]. Construction and Building Materials, 2020, 260: 120456. https://doi.org/10.1016/j.conbuildmat.2020.120456 [160] Kong L, Zhang B, Fang J. Effect of bactericide on the deterioration of concrete against sewage[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018160. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0002358