参考文献
[1] 关国浩, 王学志, 贺晶晶. 海水海砂混凝土研究进展[J]. 硅酸盐通报, 2022, 41(05): 1483-1493. https://dx.doi.org/10.3969/j.issn.1001-1625.2022.5.gsytb202205001 [2] Monteiro P J M, Miller S A, Horvath A. Towards sustainable concrete[J]. Nature Materials, 2017, 16(7): 698-699. https://doi.org/10.1038/nmat4930 [3] Shaikh, Ahmed F U. Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates[J]. International Journal of Sustainable Built Environment, 2016, 5(2): 277-287. https://dx.doi.org/10.1016/j.ijsbe.2016.05.009 [4] Bazli M, Zhao X L, Jafari A, et al. Mechanical properties of pultruded GFRP profiles under seawater sea sand concrete environment coupled with UV radiation and moisture[J]. Construction and Building Materials, 2020(20): 258. https://dx.doi.org/10.1016/j.conbuildmat.2020.120369 [5] None. Sand, rarer than one thinks[J]. Environmental Development, 2014, 11: 208-218. https://dx.doi.org/10.1016/j.envdev.2014.04.001 [6] Engelsen C J, Sloot H A V D, Petkovic G. Long-term leaching from recycled concrete aggregates applied as sub-base material in road construction[J]. Science of The Total Environment, 2017, 587(1): 94-101. https://dx.doi.org/10.1016/j.scitotenv.2017.02.052 [7] C D P A, C S A Y B, C K C, et al. Study of the influence of seawater and sea sand on the mechanical and microstructural properties of concrete[J]. Journal of Building Engineering, 2021, 42: 103006. https://doi.org/10.1016/j.jobe.2021.103006 [8] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(01): 69-77. https://dx.doi.org/10.11896/cldb.20100075 [9] 李薛忠, 吴庆, 王刚, 等. 海水海砂混凝土中钢筋锈蚀的电化学特征[J]. 混凝土, 2020(7): 5. https://dx.doi.org/10.3969/j.issn.1002-3550.2020.0 [10] Xiao J, Qiang C, Nanni A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction & Building Materials, 2017, 155(nov. 30): 1101-1111. https://dx.doi.org/10.1016/j.conbuildmat.2017.08.130 [11] 郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370. https://dx.doi.org/10.1360/N972015-00829 [12] 王慧, 沈建锋, 张岗, 等. 海岛反渗透海水淡化技术发展现状与研究前景[J]. 广州化工, 2013, 41(11): 3. https://dx.doi.org/10.3969/j.issn.100 [13] 周昱程. 海砂, 淡化海砂对混凝土力学和耐久性能的影响综述[J]. 混凝土与水泥制品, 2023(3): 24-28. https://dx.doi.org/10.19761/j.1000-4637.2 [14] 李秀琳. 关于海砂的淡化处理方法分析[J]. 福建建材, 2020(5): 29-30, 42. [15] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10): 1-19. https://dx.doi.org/10.15951/j.tmgcxb.2019.10.001 [16] Teng J, Zhang S, Xiao Q, et al. Performance enhancement of bridges and other structures through the use of fibre-reinforced polymer(FRP)composites: some recent Hong Kong research [C]. In A. Chen, D. M. Frangopol & X. Ruan(Eds. ), Bridge Maintenance, Safety, Management and Life Extension-Proceedings of the 7th International Conference of Bridge Maintenance, Safety and Management, IABMAS 2014(pp. 73-81). Leiden, the Netherlands: Taylor and Francis/CRC Press/Balkema. [17] Dong Z, Wu G, Zhao X L, et al. Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars[J]. Construction and Building Materials, 2018, 19(20): 671-682. https://dx.doi.org/10.1016/j.conbuildmat.2018.10.166 [18] Yongmin Y, Zhaoheng L, Tongsheng Z, et al. Bond-Slip Behavior of Basalt Fiber Reinforced Polymer Bar in Concrete Subjected to Simulated Marine Environment: Effects of BFRP Bar Size, Corrosion Age, and Concrete Strength[J]. International Journal of Ploymer Science(2017-3-26), 2017: 1-9. https://dx.doi.org/10.1155/2017/5156189 [19] Li C, Gao D, Wang Y, et al. Effect of high temperature on the bond performance between basalt fibre reinforced polymer(BFRP)bars and concrete[J]. Construction & Building Materials, 2017, 141(15): 44-51. https://dx.doi.org/10.1016/j.conbuildmat.2017.02.125 [20] H. A. T. M. Saadatmanesh, Environmental effects on mechanical properties of wet lay-up fiber-reinforced polymer[J]. ACI Mater. J, 2010(3): 267-274. https://doi.org/10.14359/51663755 [21] A H Y K, A Y H P, A Y J Y, et al. Short-term durability test for GFRP rods under various environmental conditions[J]. Composite Structures, 2008, 83(1): 37-47. https://dx.doi.org/10.1016/j.compstruct.2007.03.005 [22] Chen Y, Davalos J F, Ray I, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures, 2007, 78(1): 101-111. https://dx.doi.org/10.1016/j.compstruct.2005.08.015 [23] Robert M, Benmokrane B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars[J]. Construction & Building Materials, 2013, 38(JAN. ): 274-284. https://dx.doi.org/10.1016/j.conbuildmat.2012.08.021 [24] Hepburn C, Adlen E, Boddington J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 11. https://doi.org/10.1038/s41586-019-1681-6 [25] 李林坤, 刘琦, 黄天勇, 等. 基于水泥基材料的CO2 矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 82-90. https://dx.doi.org/10.11896/cldb.20100295 [26] Xian X, Zhang D, Lin H. Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance[J]. Journal of CO2 Utilization, 2022, 56: 101861. https://doi.org/10.1016/j.jcou.2021.101861 [27] 史才军, 邹庆焱, 何富强. 二氧化碳养护混凝土的动力学研究[J]. 硅酸盐学报, 2010, 38(07): 1179-1184. https://dx.doi.org/10.14062/j.issn.0454-5648.2010.07.031 [28] 邵一心, MONKMAN Sean, TRAN Stanley. 混凝土基本组分吸收二氧化碳的能力(英文)[J]. 硅酸盐学报, 2010, 38(9): 1645-1651. https://dx.doi.org/2010,38(09):1645-1651 [29] Guo B, Chu G, Yu R, et al. Effects of sufficient carbonation on the strength and microstructure of CO2-cured concrete[J]. Journal of Building Engineering, 2023, 76. https://doi.org/10.1016/j.jobe.2023.107311 [30] Guo B, Yu R, Wang J, et al. Three-fold benefits of using CO2 to cure seawater sea sand concrete[J]. Construction and Building Materials, 2023, 401: 132868. https://doi.org/10.1016/j.conbuildmat.2023.132868 [31] Liu Z, Meng W. Fundamental understanding of carbonation curing and durability of carbonation-cured cementbased composites: A review[J]. Journal of CO2 utilization, 2021, 44: 101428. https://dx.doi.org/10.1016/j.jcou.2020.101428 [32] 曾海马, 刘志超, 王发洲. 碳化养护对大掺量钢渣砂浆的力学性能及显微结构的影响[J]. 硅酸盐学报, 2020, 48(11): 1801-1807. https://dx.doi.org/10.14062/j.issn.0454-5648.20200200 [33] 张丰, 莫立武, 邓敏. 碳化养护对钢渣混凝土强度和体积稳定性的影响[J]. 硅酸盐学报, 2016, 44(5): 640-646. https://dx.doi.org/10.14062/j.issn.0454-5648.2016.05.03 [34] 纤维增强复合材料工程应用技术标准. GB 50608-2020. [35] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. [36] 薛伟辰, 郑乔文, 杨雨. FRP筋混凝土梁正截面抗弯承载力设计研究[J]. 工程力学, 2009, 26(01): 79-85. [37] Xue W, Peng F, Zheng Q. Design Equations for Flexural Capacity of Concrete Beams Reinforced with Glass Fiber- Reinforced Polymer Bars[J]. JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2016, 20(3): 11. https://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000630 [38] Choi K K, Urgessa G, Taha M M R, et al. Quasi-Balanced Failure Approach for Evaluating Moment Capacity of FRP Under reinforced Concrete Beams[J]. Journal of Composites for Construction, 2008, 12(3): 236-245. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:3(236) [39] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(01): 134-150. https://dx.doi.org/10.14006/j.jzjgxb.2019.0349 [40] 欧进萍, 王勃, 何政. CFRP加筋混凝土梁的力学性能试验与分析[J]. 土木工程学报, 2005(12): 8-12. https://dx.doi.org/10.3321/j.issn:1000-131X.2005.12.002 [41] 彭飞, 薛伟辰. FRP筋混凝土T形和矩形截面梁抗弯承载力计算方法[J]. 工程力学, 2022, 39(02): 76-84. https://dx.doi.org/10.6052/j.issn.1000-4750.2020.12.0002 [42] 常福财. GFRP 筋海砂混凝土梁受弯性能试验研究[D]. 长春: 吉林建筑大学, 2021. https://dx.doi.org/10.13905/j.cnki.dwjz.2021.05.018 [43] Adam M A, Said M, Mahmoud A A, et al. Analyticaland experimental flexural behavior of concrete beamsreinforced with glass fiber reinforced polymers bars[J]. Construction and Building Materials, 2015, 84: 13. https://dx.doi.org/10.1016/j.conbuildmat.2015.03.057 [44] Hua Y, Yin S, Feng L. Bearing behavior and serviceability evaluation of seawater sea-sand concrete beamsreinforced with BFRP bars[J]. Construction and BuildingMaterials, 2020, 243: 13. https://dx.doi.org/10.1016/j.conbuildmat.2020.118294 [45] 赵嘉玮. FRP筋海水海砂混凝土梁的受弯性能研究和理论分析[D]. 呼和浩特: 内蒙古工业大学, 2015. https://dx.doi.org/10.7666/d.D781735