2024年4月25日 星期四
基于路面激励的车辆参数识别方法
Vehicle Parameter Identification Method Based on Road Excitation
摘要

准确的车辆物理参数对车辆振动信息的使用有重要的作用。本文提出一种基于路面激励来识别车辆参数的方法。首先, 根据车辆轮胎与路面位移的接触条件, 推导出车辆各自由度的加速度响应关于路面位移激励的频响函数, 建立了频响函数、车辆加速度响应、路面横截面形状在频域中的关系; 然后根据路面的频率响应建立目标函数, 并使用内点法进行求解来识别车辆物理参数; 最后进行数值仿真, 成功识别出车辆模型的物理参数, 结果表明, 该方法能够对车辆物理参数进行有效识别。

Abstract

Accurate vehicle physical parameters play an important role in the use of vehicle vibration information. A method to identify vehicle parameters based on road excitation is proposed. Firstly, the frequency response function of vehicle acceleration response with respect to road displacement excitation is derived based on the contact conditions for the displacement between vehicle tires and road, and the relationship between frequency response function, vehicle acceleration response and road cross-section shape in the frequency domain is established. Then, the objective function is established using the frequency response of the road surface, and the physical parameters of the vehicle are identified using the interior point method. Finally, numerical simulation is performed and the physical parameters of the vehicle model are successfully identified. The results show that the method can effectively identify the physical parameters of vehicles.

DOI10.48014/ems.20220906001
文章类型研究性论文
收稿日期2022-09-06
接收日期2022-09-20
出版日期2022-12-28
关键词车辆, 参数识别, 路面激励, 频域响应, 目标函数
KeywordsVehicle, parameter identification, road excitation, frequency domain response, objective function
作者安新好, 侯吉林*
AuthorAN Xinhao, HOU Jilin*
所在单位大连理工大学, 大连 116023
CompanyDalian University of Technology, Dalian 116023, China
浏览量413
下载量267
基金项目本项研究得到了国家自然科学基金项目(资助号51878118)的资助。
参考文献[1] 乔宏, 夏禾, 杜宪亭. 基于Duhamel积分的车桥耦合动力分析方法[J]. 西南交通大学学报, 2014, 49(05): 766-771.
https://doi.org/10.3969/j.issn.0258-2724.2014.05.004
[2] 朱劲松, 香超, 祁海东. 考虑车桥耦合效应的大跨悬索桥钢-混组合梁疲劳损伤评估[J]. 振动与冲击, 2021, 40(05): 218-229.
https://doi.org/10.13465/j.cnki.jvs.2021.05.029
[3] 张予东, 马春艳, 陈鹏一. 基于车桥耦合振动的桥梁结构损伤识别[J]. 公路工程, 2021, 46(02): 60-64.
https://doi.org/10.19782/j.cnki.1674-0610.2021.02.010
[4] OBRIEN E J, CANTERO D, ENRIGHT B, et al. Characteristic Dynamic Increment for extreme traffic loading events on short and medium span highway bridges[J]. Engineering Structures, 2010, 32(12): 3827-3835.
https://doi.org/10.1016/j.engstruct.2010.08.018
[5] ALLAMRAJU K V. Nonlinear behavior of quarter locomotive suspension system[J]. Materials today : proceedings, 2018, 5(2): 4887-4892.
https://doi.org/10.1016/j.matpr.2017.12.065
[6] 曹树谦, 等. 振动结构模态分析[M]. 天津: 天津大学出版社, 2014.
[7] ZHENG M, PENG P, ZHANG B, et al. A new physical parameter identification method for two-axis on-road vehicles: Simulation and experiment[J]. Shock and Vibration, 2015, 2015: 1-9.
https://doi.org/10.1155/2015/191050
[8] DONG G, CHEN J, ZHANG N. Investigation into onroad vehicle parameter identification based on subspace methods[J]. Journal of Sound and Vibration, 2014, 333(24): 6760-6779.
https://doi.org/10.1016/j.jsv.2014.07.012
[9] ROZYN M, ZHANG N. A method for estimation of vehicle inertial parameters[J]. Vehicle system dynamics, 2010, 48(5): 547-565.
https://doi.org/10.1080/00423110902939863
[10] 谢旭, 李季隆, 赵俊亮, 等. 基于遗传算法的车辆参数识别方法[J]. 浙江大学学报(工学版), 2010, 44(09): 1818-1824.
[11] GASPAR P, SZABO Z, BOKOR J. Parameter identification of a suspension system and road disturbance estimation[J]. International Journal of Vehicle Systems Modeling and Testing, 2007, 2(2): 128-137.
https://doi.org/10.1504/IJVSMT.2007.013891
[12] JIANG R J, AU F T K, CHEUNG Y K. Identification of vehicles moving on continuous bridges with rough surface[J]. Journal of Sound and Vibration, 2004, 274(3-5): 1045-1063.
https://doi.org/10.1016/S0022-460X(03)00664-3
[13] RUSSO M, RUSSO R, VOLPE A. Car parameters identification by handling manoeuvres[J]. Vehicle system dynamics, 2000, 34(6): 423-436.
https://doi.org/10.1076/vesd.34.6.423.2053
[14] CHENG C, CEBON D. Parameter and state estimation for articulated heavy vehicles[J]. Vehicle System Dy- namics, 2011, 49(1-2): 399-418.
https://doi.org/10.1080/00423110903406656
[15] 林棻, 赵又群. 基于双重扩展自适应卡尔曼滤波的汽车状态和参数估计[J]. 中国机械工程, 2009, 20(06): 750-755.
https://doi.org/10.3321/j.issn:1004-132X.2009.06.026
[16] THITE A N, BANVIDI S, IBICEK T, et al. Suspension parameter estimation in the frequency domain using a matrix inversion approach[J]. Vehicle system dynamics, 2011, 49(12): 1803-1822.
https://doi.org/10.1080/00423114.2010.544319
[17] ZHAO B, NAGAYAMA T. IRI estimation by the frequency domain analysis of vehicle dynamic responses[J]. Procedia Engineering, 2017, 188: 9-16.
https://doi.org/10.1016/j.proeng.2017.04.451
[18] ZHAO B, NAGAYAMA T, TOYODA M, et al. Vehicle Model calibration in the frequency domain and its application to large-scale IRI estimation[J]. Journal of disaster research, 2017, 12(3): 446-455.
https://doi.org/10.20965/jdr.2017.p0446
[19] 李源. 基于卡尔曼滤波算法的路面平整度识别方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[20] ZHANG Q, HOU J, DUAN Z, et al. Road roughness estimation based on the vehicle frequency response function[J]. Actuators, 2021, 10(5): 89.
https://doi.org/10.3390/act10050089
[21] 陈宝林. 最优化理论与算法[M]. 北京: 清华大学出版社, 2005.
[22] 梁新成, 张军, 徐瑞. 三角级数法的路面重构仿真研究[J]. 汽车工程学报, 2011, 1(5): 442-447.
https://doi.org/10.3969/j.issn.2095-1469.2011.05.002
引用本文安新好, 侯吉林. 基于路面激励的车辆参数识别方法[J]. 工程材料与结构, 2022, 1(2): 15-23.
CitationAN Xinhao, HOU Jilin. Vehicle parameter identification method based on road excitation[J]. Engineering Materials and Structures, 2022, 1(2): 15-23.