摘要 | 超高性能水泥基复合材料 (Ultra-high performance cementitious composites, 简称UHPCC) 是近30年来最具创新和潜力的新一代水泥基复合材料。然而, 低孔隙和高密实度赋予UHPCC极高强度的同时, 也带来了材料毛细孔负压大、自收缩现象严重、水化速率快、温度应力大等问题。具有小尺寸效应和纳米效应的纳米填料有助于改善多尺度的水泥基原材料在纳米尺度上的连续性, 弥补水泥基复合材料的纳米结构缺陷, 从而自下而上地改性其力学、耐久等性能, 同时赋予水泥基复合材料功能特性。其中, 碳纳米管 (Carbon nanotubes, 简称CNTs) 既拥有碳纤维材料的固有特性, 又具有高导电导热、耐热耐蚀等特性, 是一种性能优异的纳米填料以及复合材料改性填料。基于此, 本文总结了UHPCC以及纳米填料, 尤其是CNTs复合水泥基材料的相关性能与研究现状, 分析了UHPCC超高性能的优化方法。纳米改性UHPCC有望从根本上设计水泥基复合材料的结构与性能, 在性能上取长补短、产生协同效应, 是研发UHPCC的创新性途径之一。 |
Abstract | Ultra-high performance cementitious composites (UHPCC) are the most innovative and promising new generation of cementitious composites over the past three decades. However, while low porosity and high density contribute to the extremely high strength of UHPCC, they also lead to issues such as high capillary suction, severe autogenous shrinkage, rapid hydration rate, and large temperature stresses within the material. Nanofillers with small size and nano effects are helpful to improve the continuity of cementitious raw materials at the nanoscale across multiple scales. They make up for the nanostructure defects of cementitious composites, thereby modifying their mechanical and durability properties from the bottom up, and at the same time endowing cement-based composite materials with functional properties. Carbon nanotubes ( CNTs) not only have the inherent characteristics of carbon fiber materials, but also have high electrical conductivity, thermal conductivity, heat resistance, and corrosion resistance, which is an excellent type of nanofillers and an ideal reinforcing filler for composites. Based on this, this paper summarizes the relevant properties and research status of UHPCC, nanofillers reinforced cementitious composites, particularly CNTs reinforced cementitious composites, and analyzes the optimization methods for achieving the ultrahigh performance of UHPCC. Nano-modification of UHPCC holds promise for fundamentally designing the structure and properties of cementitious composites, achieving complementary strengths and synergistic effects in performance. It is one of the innovative approaches in the development of UHPCC. |
DOI | 10.48014/ems.20241230001 |
文章类型 | 综 述 |
收稿日期 | 2024-12-01 |
接收日期 | 2024-12-12 |
出版日期 | 2024-12-28 |
关键词 | 超高性能水泥基复合材料, 纳米改性, 碳纳米管, 性能, 机理 |
Keywords | Ultra-high performance cementitious composites, nano-modification, carbon nanotubes, performances, mechanisms |
作者 | 王丹娜1, 努尔艾力·麦麦提图尔荪2, 王欣悦3, 韩宝国4,* |
Author | WANG Danna1, NUERAILI Maimaitituersun2, WANG Xinyue3, HAN Baoguo4,* |
所在单位 | 1. 浙江水利水电学院建筑工程学院, 杭州 310018 2. 喀什大学交通学院, 喀什 844000 3. 天津大学建筑工程学院, 天津 300072 4. 大连理工大学建设工程学院, 大连 116024 |
Company | 1. School of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China 2. School of Transportation, Kashi University, Kashi 844000, China 3. School of Civil Engineering, Tianjin University, Tianjin 300072, China 4. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China |
浏览量 | 559 |
下载量 | 212 |
基金项目 | 本项研究得到了国家自然科学基金(资助号:52178188,52308236,52368031),全国建材行业重大科技攻关“揭榜挂帅”项目(资助号:2023JBGS10-02),辽宁省自然联合基金(资助号:2023-BSBA-077)和中央高校基本科研业务费(资助号:DUT24GJ202)的资助。 |
参考文献 | [1] Han B G, Zhang L Q, Ou J P. Smart and multifunctional concrete towards sustainable infrastructures[M]. Berlin: Springer, 2017: 1-7. [2] 赵素晶. 超高性能水泥基复合材料的力学性能和微结构研究[D]. 南京: 东南大学, 2016: 1-5. [3] Ding S Q, Wang X Y, Qiu L S, et al. Self-sensing cementitious composites with hierarchical carbon fiber-carbon nanotube composite fillers for crack development monitoring of a maglev girder[J]. Small, 2023, 19(9). https://doi.org/10.1002/smll.202206258 [4] Li Z, Ding S Q, Kong L J, et al. Nano TiO2-engineered anti-corrosion concrete for sewage system[J]. Journal of Cleaner Production, 2022, 337. https://doi.org/10.1016/j.jclepro.2022.130508 [5] Wang H, Shi F T, Shen J L, et al. Research on the selfsensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2021, 119. https://doi.org/10.1016/j.cemconcomp.2021.104001 [6] Amran M, Huang S-S, Onaizi A M, et al. Recent trends in ultra-high performance concrete(UHPC): Current status, challenges, and future prospects[J]. Construction and Building Materials, 2022, 352: 129029. https://doi.org/10.1016/j.conbuildmat.2022.129029 [7] Anunike G S, Tarabin M, Hisseine O A. Ultra-high-performance concrete for nuclear applications: A review of raw materials and mix design approaches[J]. Construction and Building Materials, 2024, 438: 136938. https://doi.org/10.1016/j.conbuildmat.2024.136938 [8] Hisseine O A, Soliman N A, Tolnai B, et al. Nano-engineered ultra-high performance concrete for controlled autogenous shrinkage using nanocellulose[J]. Cement and Concrete Research, 2020, 137. https://doi.org/10.1016/j.cemconres.2020.106217 [9] Maruyama I, Teramoto A. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water-binder ratio[J]. Cement and Concrete Research, 2013, 50: 41-50. https://doi.org/10.1016/j.cemconres.2013.03.017 [10] Li Z, Corr D J, Han B G, et al. Investigating the effect of carbon nanotube on early age hydration of cementitious composites with isothermal calorimetry and Fourier transform infrared spectroscopy[J]. Cement and Concrete Composites, 2020, 107. https://doi.org/10.1016/j.cemconcomp.2020.103513 [11] Ding S Q, Xiang Y, Ni Y-Q, et al. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures[ J]. Nano Today, 2022, 43: 101438. https://doi.org/10.1016/j.nantod.2022.101438 [12] Cuenca E, Dambrosio L, Lizunov D, et al. Mechanical properties and self-healing capacity of ultra high performance fibre reinforced concrete with alumina nano- fibres: Tailoring ultra high durability concrete for aggressive exposure scenarios[J]. Cement and Concrete Composites, 2021, 118: 103956. https://doi.org/10.1016/j.cemconcomp.2021.103956 [13] Wang X Y, Dong S F, Li Z M, et al. Nanomechanical characteristics of interfacial transition zone in nano-engineered concrete[J]. Engineering, 2022, 17: 99-109. https://doi.org/10.1016/j.eng.2020.08.025 [14] Zhang S H, Cui S A, Wan M X, et al. Experimental study on mechanical property and pore structure of nano-modified concrete in the large temperature difference environment of cold-region tunnels[J]. Structures, 2024, 66: 106894. https://doi.org/10.1016/j.istruc.2024.106894 [15] Cui X, Sun S W, Han B G, et al. Mechanical, thermaland electromagnetic properties of nanographite plateletsmodified cementitious composites[J]. Composites PartA: Applied Science and Manufacturing, 2017, 93: 49-58. https://doi.org/10.1016/j.compositesa.2016.11.017 [16] Ding S Q, Dong S F, Ashour A, et al. Development ofsensing concrete: Principles, properties and its applications[J]. Journal of Applied Physics, 2019, 126(24). https://doi.org/10.1063/1.5128242 [17] Yazdi M A, Gruyaert E, Van Tittelboom K, et al. Treatment with nano-silica and bacteria to restore thereduced bond strength between concrete and repairmortar caused by aggressive removal techniques[J]. Cement and Concrete Composites, 2021, 120. https://doi.org/10.1016/j.cemconcomp.2021.104064 [18] Ghazy A, Bassuoni M T, Shalaby A. Nano-modified flyash concrete: A repair option for concrete pavements[J]. Aci Materials Journal, 2016, 113(2): 231-242. https://doi.org/10.14359/51688642 [19] Wang X Y, Dong S F, Ashour A, et al. Bond of nanoinclusionsreinforced concrete with old concrete: Strength, reinforcing mechanisms and prediction model[J]. Construction and Building Materials, 2021, 283. https://doi.org/10.1016/j.conbuildmat.2021.122741 [20] Jung M, Lee Y-s, Hong S-G, et al. Carbon nanotubes(CNTs)in ultra-high performance concrete(UHPC): Dispersion, mechanical properties, and electromagneticinterference(EMI)shielding effectiveness(SE)[J]. Cementand Concrete Research, 2020, 131. https://doi.org/10.1016/j.cemconres.2020.106017 [21] Han B G, Zhang K, Yu X, et al. Electrical characteristicsand pressure-sensitive response measurements ofcarboxyl MWNT/cement composites[J]. Cement andConcrete Composites, 2012, 34(6): 794-800. https://doi.org/10.1016/j.cemconcomp.2012.02.012 [22] Wang X R, Li Q H, Lai H X, et al. Broadband microwaveabsorption enabled by a novel carbon nanotubegratings/cement composite metastructure[J]. CompositesPart B: Engineering, 2022, 242: 110071. https://doi.org/10.1016/j.compositesb.2022.110071 [23] Richard P, Cheyrezy M. Composition of reactive powderconcretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2 [24] De Larrard F, Sedran T. Optimization of ultra-high-performanceconcrete by the use of a packing model[J]. Cement and Concrete Research, 1994, 24(6): 997-1009. https://doi.org/10.1016/0008-8846(94)90022-1 [25] Ultra-high performance concrete market[EB/OL]. 2024, https://www.marketsandmarkets.com/Market-Reports/ultra-high-performance-concrete-market-216557370.html. [26] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(23): 33-43. [27] Du J, Meng W, Khayat K H, et al. New development ofultra-high-performance concrete(UHPC)[J]. CompositesPart B: Engineering, 2021, 224: 109220. https://doi.org/10.1016/j.compositesb.2021.109220 [28] 王佳亮. 活性粉末混凝土抗冲击性能的纳米复合增强及其微观机理研究[D]. 大连: 大连理工大学, 2022: 2-26. [29] 龙广成. 活性粉末混凝土力学性能的试验研究[J]. 混凝土, 2004(10): 44-45+50. [30] 安明喆, 杨志慧, 余自若, 等. 活性粉末混凝土抗拉性能研究[J]. 铁道学报, 2010, 32(01): 54-58. [31] Meng W, Khayat K H. Effect of graphite nanoplateletsand carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC[J]. Cement and Concrete Research, 2018, 105: 64-71. https://doi.org/10.1016/j.cemconres.2018.01.001 [32] 屈文俊, 邬生吉, 秦宇航. 活性粉末混凝土力学性能试验[J]. 建筑科学与工程学报, 2008, 25(04): 13-18. [33] 余自若, 阎贵平, 张明波. 活性粉末混凝土的弯曲强度和变形特性[J]. 北京交通大学学报, 2006(01): 40-43. [34] Garas V Y, Kurtis K E, Kahn L F. Creep of UHPC intension and compression: Effect of thermal treatment[J]. Cement and Concrete Composites, 2012, 34(4): 493-502. https://doi.org/10.1016/j.cemconcomp.2011.12.002 [35] 龙广成, 谢友均, 陈瑜. 养护条件对活性粉末砼(RPC200)强度的影响[J]. 混凝土与水泥制品, 2001(03): 15-16. [36] Li H Y, Liu G. Tensile properties of hybrid fiber-reinforcedreactive powder concrete after exposure to elevatedtemperatures[J]. International Journal of ConcreteStructures and Materials, 2016, 10(1): 29-37. [37] Yazici H, Yardimci M Y, Aydin S, et al. Mechanicalproperties of reactive powder concrete containing mineraladmixtures under different curing regimes[J]. Construction and Building Materials, 2009, 23(3): 1223-1231. https://doi.org/10.1016/j.conbuildmat.2008.08.003 [38] 上官玉明. 免蒸养活性粉末混凝土研究及应用[D]. 青岛: 青岛理工大学, 2010: 41-49. [39] Guo Y B, Gao G F, Jing L, et al. Response of highstrengthconcrete to dynamic compressive loading[J]. International Journal of Impact Engineering, 2017, 108: 114-135. https://doi.org/10.1016/j.ijimpeng.2017.04.015 [40] Xiao J Z, Li L, Shen L M, et al. Compressive behaviourof recycled aggregate concrete under impact loading[J]. Cement and Concrete Research, 2015, 71: 46-55. https://doi.org/10.1016/j.cemconres.2015.01.014 [41] Tai Y S. Uniaxial compression tests at various loadingrates for reactive powder concrete[J]. Theoretical andApplied Fracture Mechanics, 2009, 52(1): 14-21. https://doi.org/10.1016/j.tafmec.2009.06.001 [42] Hou X M, Cao S J, Zheng W Z, et al. Experimentalstudy on dynamic compressive properties of fiber-reinforcedreactive powder concrete at high strain rates[J]. Engineering Structures, 2018, 169: 119-130. https://doi.org/10.1016/j.engstruct.2018.05.036 [43] 王勇华, 梁小燕, 王正道, 等. 活性粉末混凝土冲击压缩性能实验研究[J]. 工程力学, 2008(11): 167-172+204. [44] Su Y, Li J, Wu C Q, et al. Influences of nano-particleson dynamic strength of ultra-high performance concrete[J]. Composites Part B: Engineering, 2016, 91: 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044 [45] 刘金涛. 基于纳米材料的活性粉末混凝土及其基本力学性能研究[D]. 杭州: 浙江大学, 2016: 106-132. [46] Aghaee K, Han T H, Kumar A, et al. Mechanism underlyingeffect of expansive agent and shrinkage reducingadmixture on mechanical properties and fiber-matrixbonding of fiber-reinforced mortar[J]. Cement andConcrete Research, 2023, 172: 107247. https://doi.org/10.1016/j.cemconres.2023.107247 [47] Jensen O M, Hansen P F. Influence of temperature onautogenous deformation and relative humidity change inhardening cement paste[J]. Cement and Concrete Research, 1999, 29(4): 567-575. https://doi.org/10.1016/S0008-8846(99)00021-6 [48] 管娟. 高性能水泥浆体早期自收缩[D]. 南京: 南京工业大学, 2005: 2-6. [49] Lura P, Jensen O M, Van Breugel K. Autogenousshrinkage in high-performance cement paste: An evaluationof basic mechanisms[J]. Cement and ConcreteResearch, 2003, 33(2): 223-232. https://doi.org/10.1016/S0008-8846(02)00890-6 [50] Wu L M, Farzadnia N, Shi C J, et al. Autogenousshrinkage of high performance concrete: A review[J]. Construction and Building Materials, 2017, 149: 62-75. https://doi.org/10.1016/j.conbuildmat.2017.05.064 [51] 韩松, 涂亚秋, 安明喆, 等. 活性粉末混凝土早期收缩规律及其控制方法[J]. 中国铁道科学, 2015, 36(01): 40-47. [52] Wong A C L, Childs P A, Berndt R, et al. Simultaneousmeasurement of shrinkage and temperature of reactivepowder concrete at early-age using fibre Bragg gratingsensors[J]. Cement and Concrete Composites, 2007, 29(6): 490-497. https://doi.org/10.1016/j.cemconcomp.2007.02.003 [53] Du Y, Zhang L F, Ruan S Q, et al. Powder gradationeffect on the fresh, mechanical, and early-age shrinkageproperties of UHPC[J]. Journal of Building Engineering, 2023, 67: 105958. https://doi.org/10.1016/j.jobe.2023.105958 [54] 叶青, 朱劲松, 马成畅, 等. 活性粉末混凝土的耐久性研究[J]. 新型建筑材料, 2006(06): 33-36. [55] Wen C, Tian Y W, Mai Z J, et al. Effect of macroporesat the steel-concrete interface on localized corrosion behaviourof steel reinforcement[J]. Cement and ConcreteComposites, 2022, 129: 104510. https://doi.org/10.1016/j.cemconcomp.2022.104510 [56] 腾银见. 玻璃钢再生纤维及粉末对活性粉末混凝土性能的影响研究[D]. 绵阳: 西南科技大学, 2020: 1-2. [57] Yoo D Y, Oh T, Banthia N. Nanomaterials in ultrahigh-performance concrete(UHPC)- A review[J]. Cementand Concrete Composites, 2022, 134: 104730. https://doi.org/10.1016/j.cemconcomp.2022.104730 [58] 安明喆, 杨新红, 王军民, 等. RPC材料的耐久性研究[J]. 建筑技术, 2007(05): 367-368. [59] Alkaysi M, El-Tawil S, Liu Z C, et al. Effects of silicapowder and cement type on durability of ultra high performanceconcrete(UHPC)[J]. Cement and ConcreteComposites, 2016, 66: 47-56. https://doi.org/10.1016/j.cemconcomp.2015.11.005 [60] Lee M-G, Chiu C-T, Wang Y-C. The study of bondstrength and bond durability of reactive powder concrete[C]. Symposium on Advances in Adhesives, AdhesionScience, and Testing, Washington, DC. 2004: 104-113. https://doi.org/10.1520/STP11662S [61] Juanhong L I U, Dongmin W, Shaomin S, et al. Researchon durability and micro structure of high volumefine mineral mixture of reactive powder concrete[J]. Journal of Wuhan University of Technology, 2008, 30(11): 54-57, 68. [62] 未翠霞, 宋少民. 大掺量粉煤灰活性粉末混凝土耐久性研究[J]. 新型建筑材料, 2005(09): 27-29. [63] Fan L, Meng W, Teng L, et al. Effects of lightweightsand and steel fiber contents on the corrosion performanceof steel rebar embedded in UHPC[J]. Constructionand Building Materials, 2020, 238: 117709. https://doi.org/10.1016/j.conbuildmat.2019.117709 [64] Hwang J P, Kim M, Ann K Y. Porosity generation arisingfrom steel fibre in concrete[J]. Construction andBuilding Materials, 2015, 94: 433-436. https://doi.org/10.1016/j.conbuildmat.2015.07.044 [65] Ghasemzadeh Mosavinejad S H, Langaroudi M A M, Barandoust J, et al. Electrical and microstructural analysisof UHPC containing short PVA fibers[J]. Constructionand Building Materials, 2020, 235: 117448. https://doi.org/10.1016/j.conbuildmat.2019.117448 [66] Wang D N, Zhang W, Ruan Y F, et al. Enhancementsand mechanisms of nanoparticles on wear resistanceand chloride penetration resistance of reactive powderconcrete[J]. Construction and Building Materials, 2018, 189: 487-497. https://doi.org/10.1016/j.conbuildmat.2018.09.041 [67] 邵四川. 纳米填料复合超高性能水泥基材料的抗氯离子渗透性能和氯离子结合能力[D]. 大连: 大连理工大学, 2023: 6-14. [68] Mostafa S A, El-Deeb M M, Farghali A A, et al. Evaluationof the nano silica and nano waste materials on thecorrosion protection of high strength steel embedded inultra-high performance concrete[J]. Scientific Reports, 2021, 11(1). https://doi.org/10.1038/s41598-021-82322-0 [69] Ghafari E, Arezoumandi M, Costa H, et al. Influence ofnano-silica addition on durability of UHPC[J]. Constructionand Building Materials, 2015, 94: 181-188. https://doi.org/10.1016/j.conbuildmat.2015.07.009 [70] 巴恒静, 国爱丽, 程志敏. 活性粉末混凝土配合比及导电性能研究[J]. 混凝土, 2008(04): 11-14+18. [71] Dong S F, Han B G, Ou J P, et al. Electrically conductivebehaviors and mechanisms of short-cut super-finestainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2016, 72: 48-65. https://doi.org/10.1016/j.cemconcomp.2016.05.022 [72] 鞠杨, 刘红彬, 刘金慧, 等. 活性粉末混凝土热物理性质的研究[J]. 中国科学: 技术科学, 2011, 41(12): 1584-1605. [73] 郑文忠, 王睿, 王英. 活性粉末混凝土热工参数试验研究[J]. 建筑结构学报, 2014, 35(09): 107-114. [74] Abid M, Hou X, Zheng W, et al. High temperature andresidual properties of reactive powder concrete-A review[J]. Construction and Building Materials, 2017, 147: 339-351. https://doi.org/10.1016/j.conbuildmat.2017.04.083 [75] 程志敏. 活性粉末混凝土的隐身性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2007: 36-49. [76] Song X, Lu Y, Song D, et al. Electromagnetic absorptionand corresponding mechanism of graphene oxide/gamma-Fe2O3-UHPC composite sheet[J]. Journal ofMaterials Science-Materials in Electronics, 2022, 33(8): 5924-5937. https://doi.org/10.1007/s10854-022-07773-1 [77] Gong J H, Ma Y W, Fu J Y, et al. Utilization of fibersin ultra-high performance concrete: A review[J]. CompositesPart B: Engineering, 2022, 241: 109995. https://doi.org/10.1016/j.compositesb.2022.109995 [78] 张茂花. 纳米路面混凝土的全寿命性能[D]. 哈尔滨: 哈尔滨工业大学, 2007: 3-14. [79] 高新, 李稳宏, 王锋, 等. 纳米材料的性能及其应用领域[J]. 石化技术与应用, 2002, 20(3): 199-201. [80] 许并社. 纳米材料及应用技术[M]. 北京: 化学工业出版社, 2004. [81] Han B G, Ding S Q, Wang J L, et al. Nano-engineeredcementitious composites: Principles and practices[M]. Singapore: Springer, 2018. [82] 胡建强. 金属纳米粒子的尺寸和形状可控合成及其表征[D]. 厦门: 厦门大学, 2003: 1-15. [83] Han B G, Zhang L Q, Zeng S Z, et al. Nano-core effectin nano-engineered cementitious composites[J]. CompositesPart A: Applied Science and Manufacturing, 2017, 95: 100-109. https://doi.org/10.1016/j.compositesa.2017.01.008 [84] Qin H Y, Ding S Q, Ashour A, et al. Revolutionizing infrastructure: The evolving landscape of electricity-basedmultifunctional concrete from concept to practice[J]. Progress in Materials Science, 2024, 145: 101310. https://doi.org/10.1016/j.pmatsci.2024.101310 [85] Bhatrola K, Maurya S K, Kothiyal N C. An updated reviewon scientometric analysis and physico-mechanicalperformance of nanomaterials in cementitious composites[J]. Structures, 2023, 58: 105421. https://doi.org/10.1016/j.istruc.2023.105421 [86] Sanchez F, Sobolev K. Nanotechnology in concrete-Areview[J]. Construction and Building Materials, 2010, 24(11): 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014 [87] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorodsand nanotubes [J]. Science, 1997, 277(5334): 1971-1975. https://doi.org/10.1126/science.277.5334.1971 [88] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionallyhigh Youngs modulus observed for individual carbonnanotubes[J]. Nature, 1996, 381(6584): 678-680. https://doi.org/10.1038/381678a0 [89] Kim G M, Yang B J, Ryu G U, et al. The electricallyconductive carbon nanotube(CNT)/cement compositesfor accelerated curing and thermal cracking reduction[J]. Composite Structures, 2016, 158: 20-29. https://doi.org/10.1016/j.compstruct.2016.09.014 [90] Chen Z T, Lim J L G, Yang E-H. Ultra high performancecement-based composites incorporating low dosageof plasma synthesized carbon nanotubes[J]. Materialsand Design, 2016, 108: 479-487. https://doi.org/10.1016/j.matdes.2016.07.016 [91] Mohsen M O, Taha R, Abu Taqa A, et al. Optimumcarbon nanotubes content for improving flexural andcompressive strength of cement paste[J]. Constructionand Building Materials, 2017, 150: 395-403. https://doi.org/10.1016/j.conbuildmat.2017.06.020 [92] Cui X, Han B G, Zheng Q F, et al. Mechanical propertiesand reinforcing mechanisms of cementitious compositeswith different types of multiwalled carbonnanotubes[J]. Composites Part A: Applied Science andManufacturing, 2017, 103: 131-147. https://doi.org/10.1016/j.compositesa.2017.10.001 [93] Gao F, Tian W, Wang Z, et al. Effect of diameter ofmulti-walled carbon nanotubes on mechanical propertiesand microstructure of the cement-based materials[J]. Construction and Building Materials, 2020, 260. https://doi.org/10.1016/j.conbuildmat.2020.120452 [94] Li G Y, Wang P M, Zhao X H. Mechanical behavior andmicrostructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon, 2005, 43(6): 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017 [95] Rocha V V, Ludvig P, Constancio Trindade A C, et al. The influence of carbon nanotubes on the fracture energy, flexural and tensile behavior of cement based composites[J]. Construction and Building Materials, 2019, 209: 1-8. https://doi.org/10.1016/j.conbuildmat.2019.03.003 [96] Silvestro L, Paul Gleize P J. Effect of carbon nanotubeson compressive, flexural and tensile strengths of Portlandcement-based materials: A systematic literaturereview [J]. Construction and Building Materials, 2020, 264. https://doi.org/10.1016/j.conbuildmat.2020.120237 [97] Hawreen A, Bogas J A, Dias A P S. On the mechanicaland shrinkage behavior of cement mortars reinforcedwith carbon nanotubes[J]. Construction and BuildingMaterials, 2018, 168: 459-470. https://doi.org/10.1016/j.conbuildmat.2018.02.146 [98] Hu Y, Luo D, Li P, et al. Fracture toughness enhancementof cement paste with multi-walled carbon nanotubes[J]. Construction and Building Materials, 2014, 70: 332-338. https://doi.org/10.1016/j.conbuildmat.2014.07.077 [99] Konsta-Gdoutos M S, Danoglidis P A, Shah S P. Highmodulus concrete: Effects of low carbon nanotube andnanofiber additions[J]. Theoretical and Applied FractureMechanics, 2019, 103. https://doi.org/10.1016/j.tafmec.2019.102295 [100] Song C, Hong G, Choi S. Effect of dispersibility of carbonnanotubes by silica fume on material properties ofcement mortars: Hydration, pore structure, mechanicalproperties, self-desiccation, and autogenous shrinkage[J]. Construction and Building Materials, 2020, 265. https://doi.org/10.1016/j.conbuildmat.2020.120318 [101] Feneuil B, Habermehi-Cwirzen K, Cwirzen A. Contributionof CNTs/CNFs morphology to reduction of autogenousshrinkage of Portland cement paste[J]. Frontiers of Structural and Civil Engineering, 2017, 11(2): 255-255. https://doi.org/10.1007/s11709-017-0395-9 [102] Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multiscalemechanical and fracture characteristics and early-age strain capacity of high performance carbonnanotube/cement nanocomposites[J]. Cement andConcrete Composites, 2010, 32(2): 110-115. https://doi.org/10.1016/j.cemconcomp.2009.10.007 [103] Liu Y M, Shi T, Zhao Y J, et al. Autogenous shrinkageand crack resistance of carbon nanotubes reinforcedcement-based materials[J]. International Journal ofConcrete Structures and Materials, 2020, 14(1). https://doi.org/10.1186/s40069-020-00421-0 [104] Nazar S, Yang J, Thomas B S, et al. Rheological propertiesof cementitious composites with and withoutnano-materials: A comprehensive review[J]. Journalof Cleaner Production, 2020, 272: 122701. https://doi.org/10.1016/j.clepro.2020.122701 [105] 李相国, 明添, 刘卓霖, 等. 碳纳米管水泥基复合材料耐久性及力学性能研究[J]. 硅酸盐通报, 2018, 37(05): 1497-1502. [106] Dalla P T, Tragazikis I K, Exarchos D A, et al. Effectof carbon nanotubes on chloride penetration in cementmortars[J]. Applied Sciences-Basel, 2019, 9(5). https://doi.org/10.3390/app9051032 [107] Li L, Jing H, Gao Y, et al. Influence of methylcelluloseon the impermeability properties of carbon nanotubebasedcement pastes at different water-to-cement ratios[J]. Construction and Building Materials, 2020, 244. https://doi.org/10.1016/j.conbuildmat.2020.118403 [108] Carrico A, Bogas J A, Hawreen A, et al. Durability ofmulti-walled carbon nanotube reinforced concrete[J]. Construction and Building Materials, 2018, 164: 121-133. https://doi.org/10.1016/j.conbuildmat.2017.12.221 [109] Li G Y, Wang P M, Zhao X H. Pressure-sensitiveproperties and microstructure of carbon nanotube reinforcedcement composites[J]. Cement and ConcreteComposites, 2007, 29(5): 377-382. https://doi.org/10.1016/j.cemconcomp.2006.12.011 [110] Yu X, Kwon E. A carbon nanotube/cement compositewith piezoresistive properties[J]. Smart Materials andStructures, 2009, 18(5). https://doi.org/10.1088/0964-1726/18/5/055010 [111] Dalessandro A, Tiecco M, Meoni A, et al. Improvedstrain sensing properties of cement-based sensorsthrough enhanced carbon nanotube dispersion[J]. Cementand Concrete Composites, 2021, 115: 103842. https://doi.org/10.1016/j.cemconcomp.2020.103842 [112] Liebscher M, Tzounis L, Junger D, et al. ElectricalJoule heating of cementitious nanocomposites filledwith multi-walled carbon nanotubes: Role of fillerconcentration, water content, and cement age[J]. Smart Materials and Structures, 2020, 29(12). https://doi.org/10.1088/1361-665X/abc23b [113] Nam I W, Choi J H, Kim C G, et al. Fabrication anddesign of electromagnetic wave absorber composed ofcarbon nanotube-incorporated cement composites[J]. Composite Structures, 2018, 206: 439-447. https://doi.org/10.1016/j.compstruct.2018.07.058 [114] Zhang W, Zheng Q, Wang D, et al. Electromagneticproperties and mechanisms of multiwalled carbonnanotubes modified cementitious composites[J]. Constructionand Building Materials, 2019, 208: 427-443. https://doi.org/10.1016/j.conbuildmat.2019.03.029 [115] Singh A P, Gupta B K, Mishra M, et al. Multiwalledcarbon nanotube/cement composites with exceptionalelectromagnetic interference shielding properties[J]. Carbon, 2013, 56: 86-96. https://doi.org/10.1016/j.carbon.2012.12.081 [116] Wei J, Fan Y, Zhao L, et al. Thermoelectric propertiesof carbon nanotube reinforced cement-based compositesfabricated by compression shear[J]. Ceramics International, 2018, 44(6): 5829-5833. https://doi.org/10.1016/j.ceramint.2018.01.074 [117] Hassanzadeh-Aghdam M K, Mahmoodi M J, Safi M. Effect of adding carbon nanotubes on the thermal conductivityof steel fiber-reinforced concrete[J]. CompositesPart B: Engineering, 2019, 174: 106972. https://doi.org/10.1016/j.compositesb.2019.106972 [118] Parveen S, Rana S, Fangueiro R, et al. Microstructureand mechanical properties of carbon nanotube reinforcedcementitious composites developed using a noveldispersion technique[J]. Cement and Concrete Research, 2015, 73: 215-227. https://doi.org/10.1016/j.cemconres.2015.03.006 [119] Datsyuk V, Kalyva M, Papagelis K, et al. Chemical oxidationof multiwalled carbon nanotubes[J]. Carbon, 2008, 46(6): 833-840. https://doi.org/10.1016/j.carbon.2008.02.012 [120] Gao Y, Jing H W, Chen S J, et al. Influence of ultrasonicationon the dispersion and enhancing effect ofgraphene oxide-carbon nanotube hybrid nanoreinforcementin cementitious composite[J]. Composites PartB: Engineering, 2019, 164: 45-53. https://doi.org/10.1016/j.compositesb.2018.11.066 [121] Wang D N, Wang X Y, Ashour A, et al. Compressiveproperties and underlying mechanisms of nickel coatedcarbon nanotubes modified concrete[J]. Constructionand Building Materials, 2022, 319: 126133. https://doi.org/10.1016/j.conbuildmat.2021.126133 [122] Wang D N, Wang X Y, Ye H L, et al. Dynamic behaviorsof nickel coated carbon nanotubes reinforced ultra-high performance cementitious composites underhigh strain rate impact loading[J]. Cement and ConcreteComposites. 2024, 149: 105525. https://doi.org/10.1016/j.cemconcomp.2024.105525 [123] Wang D N, Wang X Y, Qiu L S, et al. Effect of nickelcoated carbon nanotubes on the tensile behaviors ofreactive powder concrete(RPC): Insights from experimentsand molecular dynamic simulations. Journal ofMaterials Science. 2023, 58: 17225-17240. htps: //doi. org/10. 1007/s10853-023-09105-y |
引用本文 | 王丹娜, 努尔艾力·麦麦提图尔荪, 王欣悦, 等. 纳米工程化超高性能水泥基复合材料综述[J]. 工程材料与结构, 2024, 3(4): 46-66. |
Citation | WANG Danna, NUERAILI Maimaitituersun, WANG Xinyue, et al. A review on nano-engineered ultra-high performance cementitious composites[J]. Engineering Materials and Structures 2024, 3(4): 46-66. |