所在单位
1. Basic Department, Guangdong Construction Polytechnic, Guangzhou, 510440, China 2. Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou, 510006, China
参考文献
[1] Jones D, Brewster R, Phillips R. Promoter architecture dictates cell-to-cell variability in gene expression[J]. Science, 2014, 346. https://dx.doi.org/10.1126/science.1255301 [2] Sanchez A, Choubey S, Kondev J. Stochastic models of transcription: From single molecules to single cells[J]. Methods, 2013, 62: 13-25. https://dx.doi.org/10.1016/j.ymeth.2013.03.026 [3] Zhou T, Zhang J. Analytical results for a multistate gene model[J]. SIAM J Appl Math, 2012, 72: 789-818. https://dx.doi.org/10.1137/110852887 [4] Chen J, Jiao F. A novel approach for calculating exact forms of mRNA distribution in single-cell measurements[J]. Mathematics, 2022, 10: 27. https://dx.doi.org/10.3390/math10010027 [5] Sun Q, Cai Z, Zhu C. A novel dynamical regulation of mRNA distribution by cross-talking pathways[J]. Mathematics, 2022, 10: 1515. https://dx.doi.org/10.3390/math10091515 [6] Zhu C, Han G, and Jiao F. Dynamical regulation of mRNA distribution by cross-talking signaling pathways[J]. Complexity, 2020: 64026703. https://dx.doi.org/10.1155/2020/6402703 [7] Larson D R. What do expression dynamics tell us about the mechanism of transcription[J]. Curr Opin Genet Dev, 2011, 21: 1-9. https://dx.doi.org/10.1016/j.gde.2011.07.010 [8] Jia C. Kinetic foundation of the zero-inflated negative binomial model for single cell RNA sequencing data[J]. SIAM J Appl Math, 2020, 80: 1336-1355. https://dx.doi.org/10.1137/19M1253198 [9] Munsky B, Fox Z, Neuert G. Integrating single-molecule experiments and discrete stochastic models to understand heterogeneous gene transcription dynamics[J]. Methods, 2015, 85: 12-21. https://dx.doi.org/10.1016/j.ymeth.2015.06.009 [10] Cao Z, Grima R. Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells[J]. Proc Natl Acad Sci, 2020, 117: 4682-4692. https://dx.doi.org/10.1073/pnas.1910888117 [11] Cao Z, Grima R. Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data[J]. J R Soc Interface, 2019, 16: 20180967. https://dx.doi.org/10.1098/rsif.2018.0967 [12] Chen L, Zhu C, Jiao F. A generalized moment-based method for estimating parameters of stochastic gene transcription[J]. Math Biosci, 2022, 345: 108780. https://dx.doi.org/10.1016/j.mbs.2022.108780 [13] Jiao F, Sun Q, Tang M, et al. Distribution modes and their corresponding parameter regions in stochastic gene transcription[J]. SIAM J Appl Math, 2015, 6: 2396-2420. https://dx.doi.org/10.1137/151005567 [14] Jiao F, Sun Q, Lin G, et al. Distribution profiles in gene transcription activated by cross-talking pathway[J]. Discrete Continuous Dyn Syst Ser B, 2019, 24: 2799-2810. https://dx.doi.org/10.3934/dcdsb.2018275 [15] Iyer-Biswas S, Hayot F, Jayaprakash C. Stochasticity of gene products from transcriptional pulsing[J]. Phys Rev E, 2009, 79: 031911. https://dx.doi.org/10.1103/PhysRevE.79.031911 [16] Chen L, Lin G, Jiao F. Using average transcription level to understand the regulation of stochastic gene activation[J]. Roy Soc Open Sci, 2022, 9: 211757. https://dx.doi.org/10.1098/rsos.211757 [17] Jiao F, Tang M, Yu J. Distribution profiles and their dynamic transition in stochastic gene transcription[J]. J. Differential Equations, 2013, 254: 3307-3328. https://dx.doi.org/10.1016/j.jde.2013.01.019 [18] Raj A, Peskin C S, Tranchina D, et al. Stochastic mRNA synthesis in mammalian cells[J]. PLoS Biol, 2006, 4: e309. https://dx.doi.org/10.1371/journal.pbio.004030