交互式路径随机基因转录模型中 mRNA数量分布的计算

Computation of mRNA Number Distributions in Interactive Pathway Stochastic Gene Transcription Model

基因表达是一个随机过程, 表现为等基因细胞群单个细胞中mRNA数量的波动性。这种波动可由mRNA数量分布Pm (t) 来刻画, 其中Pm (t) 是指在t时刻产生m个mRNA分子的概率。对于一个给定的随机基因转录模型, 如何求解对应的Pm (t) 精确表达式一直是该领域的研究热点。在现有工作中, 大多数结果是在稳态情形或者特定的参数区域内来求解Pm (t) , 这影响了我们全面理解不同随机基因调控模式对mRNA数量分布的动力学影响。本论文中, 我们探讨了交互式信号路径随机基因转录模型的Pm (t) 计算, 并给出了其在任意系统参数条件下的精确表达式。交互式信号路径模型被成功应用于阐述可诱导基因应对环境变化下的随机转录数据。这项工作为我们进一步研究基因转录的交互式信号路径调控机制提供动力学理论基础。

Gene expression is a stochastic process characterized by fluctuations in the amount of mRNA in individual cells of an isogenic cell population. The fluctuation can be characterized by the mRNA number distribution Pm (t) , which denotes the probability of producing m copies of mRNA molecules in one cell at time t. For a given stochastic gene transcription model, how to solve the corresponding Pm (t) exact expression has been a hot research topic in this field. In the existing work, most of the results are solved for Pm (t) in the steady state case or in a specific parameter region, which affects us to fully understand the kinetic effects of different stochastic gene regulation patterns on the distribution of mRNA quantities. In this thesis, we explore the computation of Pm (t) for the cross-talk pathway model and give its exact expression under arbitrary system parameter conditions. The interactive signaling pathway model is successfully applied to elaborate stochastic transcription data of inducible genes in response to environmental changes. This work provides a kinetic theoretical basis for us to further investigate the interactive signaling pathway regulatory mechanism of gene transcription.