参考文献
[1] Yu D, Wong Y M, Cheong Y, et al. Asherman syndrome— one century later[J]. Fertility and Sterility, 2008, 89(4): 759-779. https://doi.org/10.1016/j.fertnstert.2008.02.096 [2] Valle R F, Sciarra J J. Intrauterine adhesions: hysteroscopic diagnosis, classification, treatment, and reproductive outcome[J]. American Journal of Obstetrics and Gynecology, 1988, 158(6): 1459-1470. https://doi.org/10.1016/0002-9378(88)90382-1 [3] Conforti A, Alviggi C, Mollo A, et al. The management of Asherman syndrome: a review of literature[J]. Reproductive Biology and Endocrinology, 2013, 11(1): 1-11. https://doi.org/10.1186/1477-7827-11-118 [4] Sardo A D S, Calagna G, Scognamiglio M, et al. Prevention of intrauterine post-surgical adhesions in hysteroscopy. A systematic review[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2016, 203: 182-192. https://doi.org/10.1016/j.ejogrb.2016.05.050 [5] Guo J, Li T C, Liu Y H, et al. A prospective, randomized, controlled trial comparing two doses of oestrogen therapy after hysteroscopic adhesiolysis to prevent intrauterine adhesion recurrence[J]. Reproductive Biomedicine Online, 2017, 35(5): 555-561. https://doi.org/10.1016/j.rbmo.2017.07.011 [6] Deans R, Abbott J. Review of intrauterine adhesions[J]. Journal of Minimally Invasive Gynecology, 2010, 17(5): 555-569. https://doi.org/10.1016/j.jmig.2010.04.016 [7] Xu W, Zhang Y, Yang Y, et al. Effect of early secondlook hysteroscopy on reproductive outcomes after hysteroscopic adhesiolysis in patients with intrauterine adhesion, a retrospective study in China[J]. International Journal of Surgery, 2018, 50: 49-54. https://doi.org/10.1016/j.ijsu.2017.11.040 [8] Tonguc E A, Var T, Yilmaz N, et al. Intrauterine device or estrogen treatment after hysteroscopic uterine septum resection[J]. International Journal of Gynecology & Obstetrics, 2010, 109(3): 226-229. https://doi.org/10.1016/j.ijgo.2009.12.015 [9] Zhang E, Song B, Shi Y, et al. Fouling-resistant zwitterionic polymers for complete prevention of postoperative adhesion[J]. Proceedings of the National Academy of Sciences, 2020, 117(50): 32046-32055. https://doi.org/10.1073/pnas.2012491117 [10] Liu H, Xu Y, Yi N, et al. Efficacy and safety of hyaluronic acid gel for the prevention of intrauterine adhesion: a meta-analysis of randomized clinical trials[J]. Gynecologic and Obstetric Investigation, 2018, 83(3): 227-233. https://doi.org/10.1159/000486674 [11] Mao X, Tao Y, Cai R, et al. Cross-linked hyaluronan gel to improve pregnancy rate of women patients with moderate to severe intrauterine adhesion treated with IVF: a randomized controlled trial[J]. Archives of Gynecology and Obstetrics, 2020, 301: 199-205. https://doi.org/10.1007/s00404-019-05368-6 [12] Chandel A K S, Shimizu A, Hasegawa K, et al. Advancement of biomaterial-based postoperative adhesion barriers[J]. Macromolecular Bioscience, 2021, 21(3): 2000395. https://doi.org/10.1002/mabi.202000395 [13] Reddy S, Santanam N, Reddy P P, et al. Interaction of Interceed oxidized regenerated cellulose with macrophages: a potential mechanism by which Interceed may prevent adhesions[J]. American journal of obstetrics and gynecology, 1997, 177(6): 1315-1321. https://doi.org/10.1016/S0002-9378(97)70070-X [14] Gibbs D M R, Black C R M, Dawson J I, et al. A review of hydrogel use in fracture healing and bone regeneration[ J]. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10(3): 187-198. https://doi.org/10.1002/term.1968 [15] Zhang Y S, Khademhosseini A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627. https://doi.org/10.1126/science.aaf3627 [16] Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications[J]. Biotechnology Advances, 2017, 35(5): 530-544. https://doi.org/10.1016/j.biotechadv.2017.05.006 [17] Burdick J A, Murphy W L. Moving from static to dynamic complexity in hydrogel design[J]. Nature Communications, 2012, 3(1): 1269. https://doi.org/10.1038/ncomms2271 [18] Seliktar D. Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012, 336(6085): 1124-1128. https://doi.org/10.1126/science.1214804 [19] Sun J Y, Zhao X, Illeperuma W R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133-136. https://doi.org/10.1038/nature11409 [20] Liu J, Pang Y, Zhang S, et al. Triggerable tough hydrogels for gastric resident dosage forms[J]. Nature Communications, 2017, 8(1): 124. https://doi.org/10.1038/s41467-017-00144-z [21] Yang H, Li C, Tang J, et al. Strong and degradable adhesion of hydrogels[J]. ACS Applied Bio Materials, 2019, 2(5): 1781-1786. https://doi.org/10.1021/acsabm.9b00103 [22] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. science, 2007, 318(5849): 426-430. https://doi.org/10.1126/science.1147241 [23] Sileika T S, Kim H D, Maniak P, et al. Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4602-4610. https://doi.org/10.1021/am200978h [24] Ding Y H, Floren M, Tan W. Mussel-inspired polydopamine for bio-surface functionalization[J]. Biosurface and Biotribology, 2016, 2(4): 121-136. https://doi.org/10.1016/j.bsbt.2016.11.001 [25] Razavi M, Hu S, Thakor A S. A collagen based cryogel bioscaffold coated with nanostructured polydopamine as a platform for mesenchymal stem cell therapy[J]. Journal of Biomedical Materials Research Part A, 2018, 106(8): 2213-2228. https://doi.org/10.1002/jbm.a.36428 [26] Wang J, Chen Y, Zhou G, et al. Polydopamine-coated Antheraea pernyi(A. pernyi)silk fibroin films promote cell adhesion and wound healing in skin tissue repair[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34736-34743. https://doi.org/10.1021/acsami.9b12643 [27] Pacelli S, Paolicelli P, Petralito S, et al. Investigating the role of polydopamine to modulate stem cell adhesion and proliferation on gellan gum-based hydrogels[J]. ACS Applied Bio Materials, 2020, 3(2): 945-951. https://doi.org/10.1021/acsabm.9b00989 [28] Michalicha A, Pałka K, Roguska A, et al. Polydopamine- coated curdlan hydrogel as a potential carrier of free amino group-containing molecules[J]. Carbohydrate Polymers, 2021, 256: 117524. https://doi.org/10.1016/j.carbpol.2020.117524 [29] Jing X, Mi H Y, Napiwocki B N, et al. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering[J]. Carbon, 2017, 125: 557-570. https://doi.org/10.1016/j.carbon.2017.09.071 [30] Xie Z, Li H, Mi H Y, et al. Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications[J]. Journal of Materials Chemistry C, 2021, 9(31): 10127-10137. https://doi.org/10.1039/d1tc02599f [31] Suneetha M, Rao K M, Han S S. Mussel-inspired cell/ tissue-adhesive, hemostatic hydrogels for tissue engineering applications[J]. ACS omega, 2019, 4(7): 12647-12656. https://doi.org/10.1021/acsomega.9b01302 [32] Zhang L, Jiang Q, Zhao Y, et al. Strong and tough PAm/SA hydrogel with highly strain sensitivity[J]. Journal of Renewable Materials, 2022, 10(2): 415. https://doi.org/10.32604/jrm.2022.016650 [33] Han L, Yan L, Wang K, et al. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality[J]. NPG Asia Materials, 2017, 9(4): e372-e372. https://doi.org/10.1038/am.2017.33 [34] Xiao B, Yang W, Lei D, et al. PGS scaffolds promote the in vivo survival and directional differentiation of bone marrow mesenchymal stem cells restoring the morphology and function of wounded rat uterus[J]. Advanced Healthcare Materials, 2019, 8(5): 1801455. https://doi.org/10.1002/adhm.201801455 [35] Lih E, Lee J S, Park K M, et al. Rapidly curable chitosan- PEG hydrogels as tissue adhesives for hemostasis and wound healing[J]. Acta Biomaterialia, 2012, 8(9): 3261-3269. https://doi.org/10.1016/j.actbio.2012.05.001 [36] Li J, Suo Z, Vlassak J J. Stiff, strong, and tough hydrogels with good chemical stability[J]. Journal of Materials Chemistry B, 2014, 2(39): 6708-6713. https://doi.org/10.1039/c4tb01194e [37] Brigham M P, Stein W H, Moore S. The concentrations of cysteine and cystine in human blood plasma[J]. The Journal of Clinical Investigation, 1960, 39(11): 1633-1638. https://doi.org/10.1172/JCI104186 [38] Cai N, Li Q, Zhang J, et al. Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent[J]. Journal of Colloid and Interface Science, 2017, 503: 168-177. https://doi.org/10.1016/j.jcis.2017.04.024 [39] Deng X, Wang T, Zhao F, et al. Poly(ether sulfone)/ activated carbon hybrid beads for creatinine adsorption[J]. Journal of Applied Polymer Science, 2007, 103(2): 1085-1092. https://doi.org/10.1002/app.25344 [40] Zhou C, Yi Z. Blood-compatibility of polyurethane/liquid crystal composite membranes[J]. Biomaterials, 1999, 20(22): 2093-2099. https://doi.org/10.1016/S0142-9612(99)00080-0