参考文献
[1] 王双燕. 壳聚糖及其衍生物在医药领域的研究进展[J]. 云南化工, 2021, 48(04): 7-8+16. 10. 3969/j. issn. 1672-2981. 2007. 03. 022 [2] 齐远征, 焦俊杰, 李永丽, 等. 壳聚糖促进口腔软组织修复的研究进展[J]. 现代口腔医学杂志, 2021, 35(6). [3] 刘卓冉, 李玉梅, 刘俊彦, 等. 口腔抗菌领域中壳聚糖及其衍生物的作用[J]. 中国组织工程研究, 2023, 27(21): 3361-3367. [4] 邹俊东, 刘定坤, 杨楠, 等. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(01): 90-94. https://doi.org/10.7518/gjkq.2020002 [5] 邱赛男, 臧睿觉, 梅予峰, 等. 氟化钠壳聚糖凝胶对乳牙釉质抗酸能力的影响[J]. 口腔医学, 2022, 42(01): 68-71+91. https://doi.org/10.13591/j.cnki.kqyx.2022.01.012. [6] 库得来提·阿不都克力木, 董红宾, 多力昆·吾甫尔.壳聚糖温敏水凝胶在口腔相关组织工程的应用进展[J]. 口腔医学, 2024, 44(02): 139-143. https://doi.org/10.13591/j.cnki.kqyx.2024.02.011. [7] 田宇航, 刘亚东, 崔宇韬, 等. 壳聚糖生物材料支架在治疗感染性骨缺损中的应用[J]. 中国组织工程研究, 2022, 26(21): 3415-3420. [8] 汤薇, 董静, 赵金荣, 等. 壳聚糖改性及改性壳聚糖应用研究进展[J]. 济南大学学报(自然科学版), 2023, 37(01): 84-93. https://doi.org/10.13349/j.cnki.jdxbn.20220928.002. [9] LYU S, ZHENG F, AGUILAR-TADEO J A, et al. Patterned, morphing composites via maskless photo-click lithography[ J/OL]. Soft Matter, 2020, 16(5): 1270-1278. https://doi.org/10.1039/C9SM02056J. [10] REDAELLI F, SORBONA M, ROSSI F. Synthesis and processing of hydrogels for medical applications[M/ OL]//Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine. Elsevier Ltd, 2016. http://dx.doi.org/10.1016/B978-0-08-100262-9.00010-0. [11] 王喆麟, 黄彩娟. 通过巯基-烯点击反应快速合成生物基热固性树脂的研究进展[J]. 塑料工业, 2023, 51(06): 24-29. https://doi.org/10.3969/j.issn.1005-5770.2023.06.004 [12] KHIRE V S, KLOXIN A M, COUCH C L, et al. Synthesis, characterization and cleavage of linear polymers attached to silica nanoparticles formed using thiol-acrylateconjugate addition reactions[J/OL]. Journal ofPolymer Science Part A: Polymer Chemistry, 2008, 46(20): 6896-6906. http://doi.wiley.com/10.1002/pola.22999. [13] MUNOZ Z, SHIH H, LIN C C. Gelatin hydrogelsformed by orthogonal thiol-norbornene photochemistryfor cell encapsulation[J/OL]. Biomater. Sci. , 2014, 2(8): 1063-1072. http://xlink.rsc.org/?DOI=C4BM00070F. [14] LIAO H, MUNOZ-PINTO D, QU X, et al. Influence ofhydrogel mechanical properties and mesh size on vocalfold fibroblast extracellular matrix production and phenotype[J/OL]. Acta Biomaterialia, 2008, 4(5): 1161-1171. http://linkinghub.elsevier.com/retrieve/pii/S1742706108001074. [15] FAIRBANKS B D, SCHWARTZ M P, HALEVI A E, et al. A Versatile Synthetic Extracellular Matrix Mimicvia Thiol-Norbornene Photopolymerization[J/OL]. AdvancedMaterials, 2009, 21(48): 5005-5010. http://doi.wiley.com/10.1002/adma.200901808. [16] HOYLE C E, LEE T Y, ROPER T. Thiol-enes: Chemistryof the past with promise for the future[J/OL]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(21): 5301-5338. http://doi.wiley.com/10.1002/pola.20366. [17] 郑淑娟, 仝涛, 许文涛, 等. 巯基-烯点击反应介导的生物传感研究进展[J]. 生物技术通报, 2021, 37(12): 243-251. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2021-0329. [18] WALKER C N, SARAPAS J M, KUNG V, et al. Multiblock Copolymers by Thiol Addition Across Norbornene[J/OL]. ACS Macro Letters, 2014, 3(5): 453-457. http://pubs.acs.org/doi/10.1021/mz5001288. [19] LIN C C, KI C S, SHIH H. Thiol-norbornene photoclickhydrogels for tissue engineering applications[J/OL]. Journal of Applied Polymer Science, 2015, 132(8): 41563. http://doi.wiley.com/10.1002/app.41563. [20] PEREIRA R F, BARRIAS C C, BÁRTOLO P J, et al. Cell-instructive pectin hydrogels crosslinked via thiolnorbornenephoto-click chemistry for skin tissue engineering[J/OL]. Acta Biomaterialia, 2018, 66: 282-293. https://doi.org/10.1016/j.actbio.2017.11.016. [21] BLANK F, JANIAK C. Metal catalysts for the vinyl/addition polymerization of norbornene[J/OL]. CoordinationChemistry Reviews, 2009, 253(7-8): 827-861. https://doi.org/10.1016/j.ccr.2008.05.010. [22] PERERA M M, AYRES N. Gelatin based dynamic hydrogelsvia thiol-norbornene reactions[J/OL]. PolymerChemistry, 2017, 8(44): 6741-6749. https://doi.org/10.1039/C7PY01630A. [23] HOYLE C E, BOWMAN C N. Thiol-Ene Click Chemistry[J/OL]. Angewandte Chemie International Edition, 2010, 49(9): 1540-1573. https://doi.org/10.1002/anie.200903924. [24] MARSILLA K, ISHAK K, AHMAD Z, et al. Synthesisand characterization of cis-5-norbornene-2, 3-dicarboxylicanhydride-chitosan[J]. e-polymers, 2010(064): 1-11. [25] FAIRBANKS B D, SCHWARTZ M P, BOWMAN CN, et al. Photoinitiated polymerization of PEG-diacrylatewith lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility[J/OL]. Biomaterials, 2009, 30(35): 6702-6707. https://doi.org/10.1016/j.biomaterials.2009.08.055. [26] SOCRATES G. Infrared Characteristic Group Frequencies: Tables and Charts[M]. Second Edi. John Wiley &Sons, 1994. [27] TRUONG V X, HUN M L, LI F, et al. In situ-formingclick-crosslinked gelatin based hydrogels for 3D cultureof thymic epithelial cells[J/OL]. Biomaterials Science, 2016, 4(7): 1123-1131. https://doi.org/10.1039/C6BM00254D. [28] FULMER G R, MILLER A J M, SHERDEN N H, etal. NMR Chemical Shifts of Trace Impurities: CommonLaboratory Solvents, Organics, and Gases in DeuteratedSolvents Relevant to the Organometallic Chemist[J/OL]. Organometallics, 2010, 29(9): 2176-2179. https://doi.org/10.1021/om100106e. [29] GUINESI L S, CAVALHEIRO É T G. The use of DSCcurves to determine the acetylation degree of chitin/chitosansamples[J/OL]. Thermochimica Acta, 2006, 444(2): 128-133. https://doi.org/10.1016/j.tca.2006.03.003. [30] BAXTER A, DILLON M, ANTHONY TAYLOR KD, et al. Improved method for i. r. determination of thedegree of N-acetylation of chitosan[J/OL]. InternationalJournal of Biological Macromolecules, 1992, 14(3): 166-169. https://doi.org/10.1016/S0141-8130(05)80007-8. [31] LAVERTU M, XIA Z, SERREQI A N, et al. A validated1H NMR method for the determination of the degreeof deacetylation of chitosan[J/OL]. Journal ofPharmaceutical and Biomedical Analysis, 2003, 32(6): 1149-1158. https://doi.org/10.1016/S0731-7085(03)00155-9. [32] VÅRUM K M, ANTOHONSEN M W, GRASDALENH, et al. Determination of the degree of N-acetylationand the distribution of N-acetyl groups in partially Ndeacetylatedchitins(chitosans)by high-field n. m. r. spectroscopy[J/OL]. Carbohydrate Research, 1991, 211(1): 17-23. https://doi.org/10.1016/0008-6215(91)84142-2. [33] HIRAI A, ODANI H, NAKAJIMA A. Determinationof degree of deacetylation of chitosan by 1H NMRspectroscopy[J/OL]. Polymer Bulletin, 1991, 26(1): 87-94. https://doi.org/10.1007/BF00299352. [34] CLAYDEN J, GREEVES N, WARREN, et al. OrganicChemistry[M]. Second. Oxford University Press, 2012. [35] DRIEMEIER C, MENDES F M, OLIVEIRA M M. Dynamicvapor sorption and thermoporometry to probewater in celluloses[J/OL]. Cellulose, 2012, 19(4): 1051-1063. https://doi.org/10.1007/s10570-012-9727-z. [36] HASSEL R L, PH D, HESSE N D, et al. Characterizationof Water Adsorption and Absorption in Pharmaceuticals: Vol. 1[R].