参考文献
[1] H. B. Long, S. C. Mao, Y. N. Liu, et al. Microstructural and compositional design of Ni-based single crystalline superalloys― A review[J]. Journal of Alloys and Compounds, 2018, 743: 203-220. https://doi.org/10.1016/j.jallcom.2018.01.224 [2] J. G. Li, J. X. Sun, J. L. Sun, et al. The precipitation and effect of topologically close-packed phases in Ni-based single crystal superalloys[J]. Journal of Materials Science and Technology, 2024, 173: 149-169. https://doi.org/10.1016/j.jmst.2023.05.074 [3] Y. Li, Y. Tan, D. G. Wang, et al. Effect of electron beam melt superheating treatment on DZ125 alloy[J]. Journal of Materials Research and Technology, 2020, 24: 6088-6106. https://doi.org/10.1016/j.jmrt.2023.04.216 [4] Tresa M. Pollock, Sammy Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361-374. https://doi.org/10.2514/1.18239 [5] L. Zheng, G. Q. Zhang, Michael J. Gorley, et al. Effects of vacuum on gas content, oxide inclusions and mechanical properties of Ni-based superalloy using electron beam button and synchrotron diffraction[J]. Materials & Design, 2021, 207: 109861. https://doi.org/10.1016/j.matdes.2021.109861 [6] T. T. Zhang, David M. Collins, DUNNE Fionn-P-E, et al. Crystal plasticity and high-resolution electron backscatter diffraction analysis of full-field polycrystal Ni superalloy strains and rotations under thermal loading[J]. Acta Materialia, 2014, 80: 25-38. https://doi.org/10.1016/j.actamat.2014.07.036 [7] J. Zhang, L. Wang, D. Wang, et al. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. ACTA METALLURGICA SINICA, 2019, 55(9): 1068-1094.(in Chinese)CNKI: SUN: JSXB. 0. 2019-09-003 [8] P. Bai, H. R. Zhang, Y. M. Li, et al. Effect of Y2O3 cruci- 10 中国材料科学进展 Progress in Chinese Materials Sciences ble on purification of Ni3Al-based superalloy scraps[J]. Rare Met. Mater. Eng, 2019, 48(02): 406-410.(in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-COSE201902007.htm [9] A. J. An, Z. Wang, C. B. Shi, et al. Supergravity-induced separation of oxide and nitride inclusions from Inconel- 718 superalloy melt[J]. ISIJ International, 2019, 60: 206-211. https://doi.org/10.2355/isijinternational.ISIJINT-2019-321 [10] Mohsen hajipour Manjili, Mohammad Halali. Removal of Non-metallic Inclusions from Nickel Base Superalloys by Electromagnetic Levitation Melting in a Slag[J]. Metallurgical and Materials Transactions B, 2018, 49: 61-68. https://doi.org/10.1007/s11663-017-1137-z [11] Q. F. You, S. Shi, X. G. You, et al. Evaporation behavior of Ni, Cr and Fe in Inconel 718 superalloy during electron beam smelting[J]. VACUUM, 2017, 135: 135-141. https://doi.org/10.1016/j.vacuum.2016.11.012 [12] X. G. You, S. Shi, Y. Tan, et al. The evaporation behavior of alloy elements during electron beam smelting of Inconel 718 alloy[J]. VACUUM, 2019, 169: 108920. https://doi.org/10.1016/j.vacuum.2019.108920 [13] Q. F. You, Study on preparation of high purity FGH4096 master alloy by electron beam melting and its purification behavior[D]. Dalian: Dalian University of Technology, 2019. [14] Y. L. Wang, Y. Tan, C. Y. Cui, et al. Evaporation behavior of alloying elements and calculation of molten pool Temperature of electron beam melting of a new Ni-Co based superalloy[J]. Materials Reports, 2023, 37(01): 176-181.(in Chinese) doi:10.11896/cldb.21080061 [15] G. Y. Dong, X. G. You, Z. H. Xu, et al. A new model for studing the evaporation behavior of alloy elements in DD98M alloy during electron beam smelting[J]. VACUUM, 2022, 195: 110641. https://doi.org/10.1016/j.vacuum.2021.110641 [16] I. Langmuir. The vapor pressure of metallic tungsten[J]. Phys. Rev, 1913, 2(5): 329-342. https://doi.org/10.1103/physrev.2.329 [17] O. Kubaschewshi, E. L. L. Evans, C. B. Alcock, Metallurgical Thermo-chemistry, fourth ed. Pergamon Press[M]. Oxford, UK, 1979: 408-420. [18] Kang Youn-bae, The Uniqueness of a Correction to Interaction Parameter Formalism in a Thermodynamically Consistent Manner[J]. Metallurgical and Materials Transactions B, 2020, 51(2): 795-804. https://doi.org/10.1007/s11663-020-01792-1 [19] MIEDEMA A-R, DECHTEL P-F, DEBOER F-R. Cohesion in alloys—fundamentals of a semi-empirical model[J]. Physica B+C, 1980, 100(1): 1-28. https://doi.org/10.1016/0378-4363(80)90054-6