摘要 | 碳纳米管纤维的机电响应与碳纳米管网络在电磁力驱动下的致密化过程相关。研究碳纳米管纤维的电学性能与机电响应的相互影响对分析碳纳米管纤维的微观结构具有理论意义, 对相关柔性电子器件的开发亦具有指导意义。本文通过分析双氧水氧化和碘修饰的碳纳米管纤维的内部结构特点, 探索碳纳米管导电网络与机电响应之间的关系。结果表明, 无定型碳等杂质阻碍电子传输和碳纳米管网络变形。经双氧水氧化处理后, 纤维内部碳纳米管表面杂质减少, 碳纳米管间的范德华力提高, 碳纳米管网络的变形能力增强, 由温度升高导致纤维弹性模量下降的负面影响减弱; 在碘修饰的碳纳米管纤维内部, 碳-碘键有效增强碳纳米管之间的相互结合力, 显著提高其力学性能和导电性, 但阻碍碳纳米管网络的收缩, 导致机电响应变弱。双氧水氧化处理比碘修饰更有利于提高碳纳米管纤维在机电响应中的收缩变形能力。 |
Abstract | The electromechanical response (EMR) of carbon nanotube (CNT) fibers is related to the densification process of the CNT network driven by electromagnetic force. The study of the interaction between the electrical properties and the electromechanical response of carbon nanotubes is of great theoretical significance for exploring the microstructure of carbon nanotube fibers and developing the related flexible electronic devices. This study investigated the relationship between the conductive pathway network and EMR, by analyzing the internal structural characteristics of the CNT fibers after undergoing hydrogen peroxide oxidation and iodine modification. The results show that impurities such as amorphous carbon impeded electron transport and deformation of CNT networks. After hydrogen peroxide oxidation treatment, he carbon nanotube surface impurities inside the fibres were reduced, the van der Waals forces between carbon nanotubes were increased, the deformation of the carbon nanotube network was enhanced, and the negative effect of the decrease in the elastic modulus of the fibres caused by the increase in temperature was weakened. In the case of iodine-decorated CNT fibers, carbon-iodine bonds effectively strengthened the interaction between CNTs, but hinders the contraction of the carbon nanotube network, resulting in a weaker electromechanical response. Hydrogen peroxide oxidation treatment is more beneficial than iodine modification to improve the shrinkage and deformation ability of carbon nanotube fibres in the electromechanical response. |
DOI | 10.48014/pcms.20240218001 |
文章类型 | 研究性论文 |
收稿日期 | 2024-02-18 |
接收日期 | 2024-02-26 |
出版日期 | 2024-06-28 |
关键词 | 碳纳米管纤维, 机电响应, 导电通路, 微观结构变化, 化学修饰 |
Keywords | Carbon nanotube fiber, electromechanical response, conductive pathways, microstructure evolution, chemical modification |
作者 | 朱苏峰, 赵增辉, 岳银平, 董旭峰*, 齐民 |
Author | ZHU Sufeng, ZHAO Zenghui, YUE Yinping, DONG Xufeng*, QI Min |
所在单位 | 大连理工大学 材料科学与工程学院, 大连 116024 |
Company | School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
浏览量 | 423 |
下载量 | 375 |
基金项目 | 本项研究得到中央高校基本科研业务费(资助号DUT22QN203和2023YGZD03)的资助 |
参考文献 | [1] Zhang X H, Lu W B, Zhou G H, et al. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics[J]. Adv Mater, 2020, 32(5): 1902028. https://doi.org/10.1002/adma.201902028 [2] Zhang S L, Nguyen N, Leonhardt B, et al. Carbon-nanotube- based electrical conductors: Fabrication, optimization, and applications[J]. Adv Electron Mater, 2019, 5(6): 1800811. https://doi.org/10.1002/aelm.201800811 [3] Weng W, Yang J J, Zhang Y, et al. A route toward smart system integration: From fiber design to device construction[J]. Adv Mater, 2020, 32(5): 1902301. https://doi.org/10.1002/adma.201902301 [4] Xiong J Q, Chen J, Lee P S. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface[J]. Adv Mater, 2021, 33(19): 2002640. https://doi.org/10.1002/adma.202002640 [5] Zhu Z D, Di J T, Liu X Y, et al. Coiled polymer fibers for artificial muscle and more applications[J]. Matter-Us, 2022, 5(4): 1092-1103. https://doi.org/10.1016/j.matt.2022.02.018 [6] Gao E L, Lu W B, Xu Z P. Strength loss of carbon nanotube fibers explained in a three-level hierarchical model[J]. Carbon, 2018, 138: 134-142. https://doi.org/10.1016/j.carbon.2018.05.052 [7] Guo W H, Liu C, Zhao F Y, et al. A novel electromechanical actuation mechanism of a carbon nanotube fiber[J]. Adv Mater, 2012, 24(39): 5379-5384. https://doi.org/10.1002/adma.201201845 [8] Chen P N, Xu Y F, He S S, et al. Biologically inspired, sophisticated motions from helically assembled, conducting fibers[J]. Adv Mater, 2015, 27(6): 1042-1047. https://doi.org/10.1002/adma.201402867 [9] Meng F C, Zhang X H, Li R, et al. Electro-induced mechanical and thermal responses of carbon nanotube fibers[J]. Adv Mater, 2014, 26(16): 2480-2485. https://doi.org/10.1002/adma.201305123 [10] Chen P N, He S S, Xu Y F, et al. Electromechanical actuator ribbons driven by electrically conducting springlike fibers[J]. Adv Mater, 2015, 27(34): 4982-4988. https://doi.org/10.1002/adma.201501731 [11] Mu J K, De Andrade M J, Fang S L, et al. Sheath-run artificial muscles [J]. Science, 2019, 365(6449): 150-155. https://doi.org/10.1126/science.aaw2403 [12] Hu X H, Jia J J, Wang Y M, et al. Fast large-stroke sheath-driven electrothermal artificial muscles with high power densities[J]. Adv Funct Mater, 2022, 32(30): 2200591. https://doi.org/10.1002/adfm.202200591 [13] Cui B, Ren M, Dong L Z, et al. Pretension-free and selfrecoverable coiled artificial muscle fibers with powerful cyclic work capability[J]. Acs Nano, 2023, 17(13): 12809-12819. https://doi.org/10.1021/acsnano.3c03942 [14] Zhu S F, Di J T, Zhao Z H, et al. A structure evolution mechanism for the modulus loss in electromechanical response of carbon nanotube fiber[J]. Carbon, 2021, 185: 289-299. https://doi.org/10.1016/j.carbon.2021.09.023 [15] Song Y H, Di J T, Zhang C, et al. Millisecond tensionannealing for enhancing carbon nanotube fibers[J]. Nanoscale, 2019, 11(29): 13909-13916. https://doi.org/10.1039/c9nr03400e [16] Li Q W, Li Y, Zhang X F, et al. Structure-dependent electrical properties of carbon nanotube fibers[J]. Adv Mater, 2007, 19(20): 3358-3363. https://doi.org/10.1002/adma.200602966 [17] Morelos-Gómez A, Fujishige M, Vega-Díaz S M, et al. High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments[J]. J Mater Chem A, 2016, 4(1): 74-82. https://doi.org/10.1039/c5ta06662j [18] Qiu L, Zou H Y, Zhu N, et al. Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers[J]. Appl Therm Eng, 2018, 141: 913-920. https://doi.org/10.1016/j.applthermaleng.2018.06.049 [19] Zhao Y, Wei J Q, Vajtai R, et al. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals[J]. Sci Rep-Uk, 2011, 1: 83. https://doi.org/10.1038/srep00083 [20] Park J, Lee J, Lee D M, et al. Mathematical model for the dynamic mechanical behavior of carbon nanotube yarn in analogy with hierarchically structured bio-materials[J]. Carbon, 2019, 152: 151-158. https://doi.org/10.1016/j.carbon.2019.05.077 |
引用本文 | 朱苏峰,赵增辉,岳银平,等. 碳纳米管纤维化学改性对电学性能和机电响应的影响[J].中国材料科学进展,2024,3(2):20-28. |
Citation | ZHU Sufeng,ZHAO Zenghui,YUE Yinping,et al.Influence of the chemical modification of carbon nanotube fibers on electrical properties and electromechanical response[J].Progress in Chinese Materials Sciences,2024,3(2):20-28. |