摘要 | 磁流变液 (Magnetorheological fluid, MRF) 作为一种磁场响应型的智能流体, 在阻尼减振领域受到广泛关注。MRF的流动状态对阻尼器中的振动控制起到关键作用。本文通过多物理场模拟对MRF在阀式阻尼器中的流动行为进行了研究, 目的在于全面的了解磁场如何改变沿磁流变阻尼器通道内MRF的速度分布和压降。通过创建通电线圈实现磁场的产生, 随后通过调整电流改变磁通密度。磁场计算表明, 在阻尼器流道最窄处, 磁场几乎垂直于MRF流动方向。接着, 基于流体流动、电场以及磁场间的多物理场耦合计算, 计算分析了不同磁场下MRF在流道中的流速变化以及压力等特性。结果表明, 在MRF流动方向垂直于磁场方向的流道最窄处, MRF的流动使其受到体积力, 进而使流速出现降低的趋势, 在流道左右两侧产生较大压力差。此外, MRF的流速随磁场的增大而减小, 磁场强度从0. 5T增加到1. 5T时, MRF流体在流道最窄处的流速降低大约0. 18m/s。 |
Abstract | Magnetorheological fluid (MRF) is a kind of magnetic field responsive intelligent fluid, which is widely concerned in the field of damping and vibration reduction. The flow state of MRF plays a key role in vibration control in dampers. In this work, the flow behavior. of magnetorheological fluid (MRF) in a valve damper is studied through multi-physical field simulations. The objective is to comprehensively comprehend the influence of the magnetic field on the velocity distribution and pressure drop of the MRF within the damper channel. The magnetic field is generated by creating an electrified coil, and the magnetic flux density is subsequently changed by adjusting the current. The magnetic field calculation shows that the magnetic field is almost perpendicular to the MRF flow direction at the narrowest part of the damper channel. Next, based on the coupling calculation of multiple physical fields between fluid flow, electric field, and magnetic field, the flow velocity and pressure characteristics of MRF in the flow channel were calculated and analyzed. The results indicate that at the slit where the MRF flow direction is perpendicular to the magnetic field direction, the volume force acting on the MRF reduces its flow velocity, resulting in a significant pressure difference between the left and right sides of the flow channel. Additionally, the flow rate of MRF exhibits a decrease as the magnetic field strength increases. When the magnetic field strength increases from 0. 5T to 1. 5T, the flow rate of MRF fluid at the narrowest part of the flow channel decreases by about 0. 18m/s. |
DOI | 10.48014/pcms.20231118001 |
文章类型 | 研究性论文 |
收稿日期 | 2023-11-18 |
接收日期 | 2023-12-17 |
出版日期 | 2024-03-28 |
关键词 | 阻尼器, 磁流变液, 流动状态, 多物理场 |
Keywords | Damper, magnetorheological fluid, flow state, multi-physical field |
作者 | 赵鹏慧1, 曾帆2, 马宁3, 王奇4, 董旭峰1,* |
Author | ZHAO Penghui1, ZENG Fan2, MA Ning3, WANG Qi4, DONG Xufeng1,* |
所在单位 | 1. 大连理工大学 材料科学与工程学院, 大连 116024 2. 海军潜艇学院, 青岛 266199 3. 大连理工大学 土木工程学院, 大连 116024 4. 海南大学 土木建筑工程学院, 海口 570228 |
Company | 1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2. Naval Submarine Academy, Qingdao 266199, China 3. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China 4. School of Civil Engineering, Hainan University, Haikou 570228, China |
浏览量 | 546 |
下载量 | 239 |
基金项目 | 本项研究得到了国家自然科学基金项目(资助号52178459和52008016)的资助。 |
参考文献 | [1] Rabinow J. The magnetic fluid clutch[J]. Electrical Engineering, 1948, 67(12): 1167-1167. https://doi.org/10.1109/EE.1948.6444497 [2] Zhou J, Mo J, Shao C, et al. Effects of magnetized walls on the particle structure and the yield stress of magnetorheological fluids[J]. Journal of Magnetism & Magnetic Materials, 2015, 389: 124-129. https://doi.org/10.1016/j.jmmm.2015.03.088 [3] De Vicente J, Klingenberg D J, Hidalgoalvarez R. Magnetorheological fluids: a review[J]. Soft Matter, 2011, 7(8): 3701-3710. https://doi.org/10.1039/C0SM01221A [4] 江泽琦, 刘坪, 方建华. 磁流变液的研究综述[J]. 合成润滑材料, 2018, 45(2): 27-30. https://doi.org/10.3969/j.issn.1672-4364.2018.02.010 [5] Liu G, Gao F, Wang D, et al. Medical applications of magnetorheological fluid: A systematic review[J]. Smart Materials and Structures, 2022, 31(4): 043002. https://doi.org/10.1088/1361-665X/ac54e7 [6] 郭朝阳, 黎剑锋, 薛群, 等. 内通道式磁流变阻尼器研究[J]. 实验力学, 2008, 23(06): 485-490. [7] 阮晓辉, 边会婷, 赵军, 等. 用于提高剪力墙性能的大尺度磁流变阻尼器的力学性能研究[J]. 实验力学, 2020, 35(05): 759-770. https://doi.org/10.7520/1001-4888-19-199 [8] 丁欢, 韩光辉, 邓华夏, 等. 视觉引导的磁流变振动控制方法[J]. 实验力学, 2021, 36(04): 491-498. https://doi.org/10.7520/1001-4888-20-207 [9] Liu X, Liu H, Liu Y. Simulation of magnetorheological fluids based on Lattice Boltzmann method with double meshes[J]. Journal of Applied Mathematics, 2012, 2012: 1-16. https://doi.org/10.1155/2012/567208 [10] Satoh A, Aoshima M. 3D Monte Carlo simulations of a magnetic disk-like particle dispersion[J]. Colloid & Polymer Science, 2011, 289(1): 53-62. https://doi.org/10.1007/s00396-010-2320-9 [11] Satoh A. Monte Carlo simulations on phase change in aggregate structures of ferromagnetic spherocylinder particles[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 504: 393-399. https://doi.org/10.1016/j.colsurfa.2016.05.081 [12] Peng Y B, Ghanem R, Li J. Investigations of microstructured behaviors of magnetorheological suspensions[J]. Journal of Intelligent Material Systems & Structures, 2012, 23(12): 1351-1370. https://doi.org/10.1177/1045389X12447288 [13] Pei L, Xuan S, Wu J, et al. Experiments and simulations on the magnetorheology of magnetic fluid based on Fe3O4 hollow chains[J]. Langmuir, 2019, 35(37): 12158-12167. https://doi.org/10.1021/acs.langmuir.9b01957 [14] Pei L, Xuan S, Pang H, et al. Influence of interparticle friction on the magneto-rheological effect for magnetic fluid: a simulation investigation[J]. Smart Materials and Structures, 2020, 29(11): 115002. https://doi.org/10.1088/1361-665X/ababe3 [15] Pei L, Ma Z, Ma D, et al. Simulations on the rheology of dry magneto-rheological fluid under various working modes[J]. Smart Materials and Structures, 2021, 31(1): 015031. https://doi.org/10.1088/1361-665x/ac36ad [16] Maurya C S, Sarkar C. Magnetic and transient temperature field simulation of plate-plate magnetorheometer using finite-element method[J]. IEEE Transactions on Magnetics, 2020, 56(4): 1-9. https://doi.org/10.1109/tmag.2019.2960237 [17] De-kui X, Song-lin N, Hui J, et al. Characteristics, optimal design, and performance analyses of MRF damper[J]. Shock and Vibration, 2018, 2018(PT. 6): 64549321. 1-6454932. 17. https://doi.org/10.1155/2018/6454932 [18] Llorente V J, Pascau A. Numerical simulations of magnetorheological fluids flowing between two fixed parallel plates[J]. Applied Mathematical Modelling, 2019, 74: 151-169. https://doi.org/10.1016/j.apm.2019.04.047 [19] 王金刚, 王治国. 磁流变阻尼器阻尼性能仿真研究[J]. 石油机械, 2006(10): 19-22+1. https://doi.org/10.3969/j.issn.1001-4578.2006.10.007 [20] 赵玉亮, 徐赵东, 许飞鸿. 基于全构件模型的磁流变阻尼器磁路分析及测试[J]. 东南大学学报(自然科学版), 2017, 47(03): 565-570. https://doi.org/10.3969/j.issn.1001-0505.2017.03.025 [21] 李国全, 黄子齐, 陈俊杰. 磁流变液制备及其流动特性有限元仿真[J]. 机电工程技术, 2023, 52(09): 84-88. https://doi.org/10.3969/j.issn.1009-9492.2023.09.018 [22] 许飞鸿, 徐赵东. 多级线圈磁流变阻尼器磁路分析[J]. 东南大学学报(自然科学版), 2016, 46(01): 100-104. https://doi.org/10.3969/j.issn.1001-0505.2016.01.017 [23] Gedik E, Kurt H, Recebli Z, et al. Two-dimensional CFD simulation of magnetorheological fluid between two fixed parallel plates applied external magnetic field[J]. Computers & fluids, 2012, 63: 128-134. https://doi.org/10.1016/j.compfluid.2012.04.011 [24] Szabo P S B, Frueh W G. The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2018, 447: 116-123. https://doi.org/10.1016/j.jmmm.2017.09.028 [25] Kemerli M, Engin T. Numerical analysis of a monotube mixed mode magnetorheological damper by using a new rheological approach in CFD[J]. Rheologica Acta, 2021, 60(1): 77-95. https://doi.org/10.1007/s00397-020-01252-2 [26] Zhang S, Zhou J, Shao C. Numerical investigation on yielding phenomena of magnetorheological fluid flowing through microchannel governed by transverse magnetic field[J]. Physics of Fluids, 2019, 31(2): 022005. https://doi.org/10.1063/1.5079624 |
引用本文 | 赵鹏慧, 曾帆, 马宁, 等. 阀式磁流变阻尼器中磁流变液流动状态多物理场模拟[J]. 中国材料科学进展, 2024, 3(1): 12-19. |
Citation | ZHAO Penghui, ZENG Fan, MA Ning, et al. Multi-physical field simulation of magnetorheological fluid flow state in valve magnetorheological damper[J]. Progress in Chinese Materials Sciences, 2024, 3(1): 12-19. |