参考文献
[1] 崔航, 王思琪, 郭世好, 等. 水凝胶的制备及应用进展[J]. 化工新型材料, 2021, 49(S1): 47-51. https://doi.org/10.19817/j.cnki.issn1006-3536.2021.S.011. [2] 秦乐静, 雒春辉. 多功能智能水凝胶材料的制备与应用进展[J]. 化工新型材料, 2021, 49(S1): 16-19. https://doi.org/10.19817/j.cnki.issn1006-3536.2021.S.004. [3] Liao Y T, Xue C, Zhang H Y. Self-powered wearable remote control system based on self-adhesive, self-healing, and tough hydrogels[J]. Nano Energy, 2024, 131B: 110262. https://doi.org/10.1016/j.nanoen.2024.110262. [4] L. Hoogendoorn, M. Huertas, P. Nitz, et al. Sustainable, Low-Cost Sorbents Based on Calcium Chloride-Loaded Polyacrylamide Hydrogels[J]. Adv. Funct. Mater. , 2024, 34(29): 14680. https://doi.org/10.1002/adfm.202314680. [5] Zhang C Y, Shi X L, Liu Q Y, et al. Hydrogel-Based Functional Materials for Thermoelectric Applications: Progress and Perspectives[J]. Adv. Funct. Mater. , 2024, 34(51): 2410127. https://doi.org/10.1002/adfm.202410127. [6] 王庆伟, 谢德民. 凝胶电解质的研究进展[J]. 化学进展, 2002(03): 167-173. [7] 倪冰选, 焦晓宁, 阮艳莉. 聚合物锂离子电池用凝胶电解质的研究进展[J]. 天津工业大学学报, 2009, 28(03): 48- 52+57. [8] 张有文, 李琪, 乔庆东. 提高凝胶电解质电导率的最新研究进展[J]. 化工科技, 2011, 19(03): 62-65. https://doi.org/10.16664/j.cnki.issn1008-0511.2011.03.003. [9] 尚昕, 刘晓红, 饶国华, 易均, 王振希. 聚合物锂离子电池凝胶电解质的研究进展[J]. 江西科学, 2014, 32(04): 443-449. https://doi.org/10.13990/j.issn1001-3679.2014.04.005. [10] 伍红雨, 肖海, 曾向东. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 242-249. https://kns.cnki.net/kcms2/article/abstract. [11] 胡丹, 刘乔, 陈重一. 聚合物水凝胶基超级电容器的研究进展[J]. 化学通报, 2018, 81(06): 483-492. https://doi.org/10.14159/j.cnki.0441-3776.2018.06.001. [12] 袁鸽, 王梦琨, 熊莲, 等. 锂离子电池凝胶电解质研究进展[J]. 新能源进展, 2020, 8(04): 331-338. [13] 李佩鸿, 张春玲, 戴雪岩, 等. 氧化石墨烯/聚合物复合水凝胶的研究进展[J]. 高等学校化学学报, 2021, 42(06): 1694-1703. [14] Liu Z Q, Zhang W T, Yin H, et al. Gradient solid electrolyte interphase exerted by robust hydrogel electrolyte- Zn interface and alkaloid additive enables reversible and durable Zn anodes[J]. Chemical Engineering Journal, 2024, 497: 154787. https://doi.org/10.1016/j.cej.2024.154787. [15] Niu B, Wang J, Guo Y L, et al. Polymers for Aqueous Zinc-Ion Batteries: From Fundamental to Applications Across Core Components[J]. Adv. Energy Mater. , 2024, 14(12): 2303967. https://doi.org/10.1002/aenm.202303967. [16] Yu J Y, Gu Y Q, Ren Y, et al. Characterization and research progress of hydrogel conductive materials for energy storage components[J]. Journal of Energy Storage, 2024, 101A: 113813. https://doi.org/10.1016/j.est.2024.113813. [17] Tang Y X, Zhang Y Y, Rui X H, et al. Conductive Inks Based on a Lithium Titanate Nanotube Gel for High- Rate Lithium-Ion Batteries with Customized ConFigureuration[ J]. Advanced Materials, 2015, 28(8): 1567-1576. https://doi.org/10.1002/adma.201505161. [18] 牛丽丽, 王培, 刘彦彬, 等. CNTs/PANI复合水凝胶电极材料的制备及电化学性能研究[J]. 塑料科技, 2019, 47(12): 5. https://doi.org/10.15925/j.cnki.issn1005-3360.2019.12.005. [19] Liu B R, Bo R H, Taheri M, et al. Metal-Organic Frameworks/Conducting Polymer Hydrogel Integrated 3D Free-Standing Monoliths as Ultrahigh Loading Li-S Battery Electrodes[J]. Nano Letters, 2019, 19(7): 4391-4399. https://doi.org/10.1021/acs.nanolett.9b01033. [20] Zhu M S, Wang X J, Tang H M, et al. Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations[J]. Advanced Functional Materials, 2020, 30(6): 1907218. https://doi.org/10.1002/adfm.201907218. [21] Wang Z F, Mo F N, Ma L T, et al. Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn-MnO2 Battery and a Flexible Battery-Sensor System[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44527-44534. https://doi.org/10.1021/acsami.8b17607. [22] Ma L T, Chen S M, Wang D H, et al. Super-Stretchable Zinc-Air Batteries Based on an Alkaline-Tolerant Dual- Network Hydrogel Electrolyte[J]. Advanced Energy Materials, 2019, 9(12): 1803046. https://doi.org/10.1002/aenm.201803046. [23] 邢博航. 石墨烯基复合水凝胶用于超级电容器电极材料的性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. [24] Li P P, Jin Z Y, Peng L L, et al. Stretchable All-Gel- State Fiber-Shaped Supercapacitors Enabled by Macro- molecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels[J]. Advanced Materials, 2018, 30(18): 1800124. https://doi.org/10.1002/adma.201800124. [25] Xu Y X, Lin Z Y, Huang X Q, et al. Functionalized Graphene Hydrogel-Based High-Performance Supercapacitors[ J]. Advanced Materials, 2013, 25(40): 5779-5784. https://doi.org/10.1002/adma.201301928. [26] 南静娅, 张盖同, 王利军, 等. 大豆蛋白增强水凝胶电解质的制备及在全固态超级电容器上的应用[J]. 高分子材料科学与工程 2021, 37(3): 8. https://doi.org/10.16865/j.cnki.1000-7555.2021.0099 [27] 杨晨, 齐世凯, 姜猛进. 纳米二氧化硅改性PVAPB水凝胶电解质及其在超级电容器中的应用[J]. 储能科学与技术, 2020, 9(6): 6. https://doi.org/10.19799/j.cnki.2095-4239.2020.0173. [28] Li G Q, Zhang X C, Sang M, et al. A supramolecular hydrogel electrolyte for high-performance supercapacitors[J]. The Journal of Energy Storage, 2021, 33: 101931. https://doi.org/10.1016/j.est.2020.101931. [29] Lu C, Chen X. All-Temperature Flexible Supercapacitors Enabled by Anti-freezing and Thermally Stable Hydrogel Electrolyte[J]. Nano Letters, 2020, 20(3): 1907-1914. https://doi.org/10.1021/acs.nanolett.9b05148. [30] Guo Y H, Bae J, Fang Z W, et al. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability[J]. Chemical Reviews, 2020, 120(15): 7642-7707. https://doi.org/10.1021/acs.chemrev.0c00345. [31] 牛丽丽, 王培, 高志华, 等. 仿生抗冻水凝胶的设计策略及展望[J]. 化工新型材料, 2024, 52(12): 12-17. https://doi.org/10.19817/j.cnki.issn1006-3536.2024.12.018 [32] Prasham S. , Dhruv P. , Balasubramanian K. , NeelaambhigaiM.(2024)Advancements in chitosan membranesfor promising secondary batteries[J]. Polymer Bulletin, 2024, 81(17): 15319-15348. https://doi.org/10.1080/25740881.2022.2113893. [33] Wei Zhang, Pan Feng, Jian Chen, Zhengming Sun, BoxinZhao. Electrically conductive hydrogels for flexible energystorage systems[J]. Progress in Polymer Science, 2019, 88: 220-240. https://doi.org/10.1016/j.progpolymsci.2018.09.001. [34] R. Jia, C. Wei, B. Ma, L. Li, C. Yang, B. Wang, L. Tan, J. Feng. Biopolymer-Based Gel Electrolytes for AdvancedZinc Ion Batteries: Progress and Perspectives[J]. Adv. Funct. Mater. 2024, 2417498. https://doi.org/10.1002/adfm.202417498