参考文献
[1] Usiskin R, Lu Y X, Popovic J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nat Rev Mater, 2021, 6(11): 1020-35. https://doi.org/10.1038/s41578-021-00324-w [2] Liu S Y, Shao W L, Zhang W S, et al. Regulating microstructures of soft carbon anodes by terminations of Ti3C2Tx MXene toward fast and stable sodium storage[J]. Nano Energy, 2021, 87: 12. https://doi.org/10.1016/j.nanoen.2021.106097 [3] Fang Y J, Luan D Y, Chen Y, et al. Rationally Designed Three-Layered Cu2S @ Carbon @ MoS2 Hierarchical Nanoboxes for Efficient Sodium Storage[J]. Angew Chem-Int Edit, 2020, 59(18): 7178-83. https://doi.org/10.1002/anie.201915917 [4] An Y L, Tian Y, Ci L J, et al. Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries[J]. ACS Nano, 2018, 12(12): 12932-40. https://doi.org/10.1021/acsnano.8b08740 [5] Liu Q, Fan L, Ma R F, et al. Super long-life potassiumion batteries based on an antimony@carbon composite anode[J]. Chem Commun, 2018, 54(83): 11773-6. https://doi.org/10.1039/c8cc05257c [6] Zhong X, Duan J M, Xiang Y E, et al. Constructing Rich Interfacial Structure by Carbon Dots to Improve the Sodium Storage Capacity of Sb/C Composite[J]. Adv Funct Mater, 2023, 33(52): 12. https://doi.org/10.1002/adfm.202306574 [7] Liu D Y, Yang L, Chen Z Y, et al. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries[J]. Sci Bull, 2020, 65(12): 1003-12. https://doi.org/10.1016/j.scib.2020.03.019 [8] Wu L, Hu X H, Qian J F, et al. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries[J]. Energy Environ Sci, 2014, 7(1): 323-8. https://doi.org/10.1039/c3ee42944j [9] Liu J, Yu L T, Wu C, et al. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@ C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/ Na-Ion Batteries[J]. Nano Lett, 2017, 17(3): 2034-42. https://doi.org/10.1021/acs.nanolett.7b00083 [10] Gu Y, Cui R C, Wang G Y, et al. Sb/N-Doped Carbon Nanofiber as a Sodium-Ion Battery Anode[J]. Energy Technol, 2022, 10(12): 10. https://doi.org/10.1002/ente.202200746 [11] Xu A D, Xia Q, Zhang S K, et al. Ultrahigh Rate Performance of Hollow Antimony Nanoparticles Impregnated in Open Carbon Boxes for Sodium-Ion Battery under Elevated Temperature[J]. Small, 2019, 15(45): 10. https://doi.org/10.1002/smll.201903521 [12] Wu C, Shen L F, Chen S Q, et al. Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage[J]. Energy Storage Mater, 2018, 10: 122-9. https://doi.org/10.1016/j.ensm.2017.08.011 [13] Cui C Y, Xu J T, Zhang Y Q, et al. Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes[J]. Nano Lett, 2019, 19(1): 538-44. https://doi.org/10.1021/acs.nanolett.8b04468 [14] Luo W, Li F, Gaumet J J, et al. Bottom-Up Confined Synthesis of Nanorod-in-Nanotube Structured Sb@N-C for Durable Lithium and Sodium Storage[J]. Adv Energy Mater, 2018, 8(19): 9. https://doi.org/10.1002/aenm.201703237 [15] Hu F Y, Zhang T P, Wang J Y, et al. Constructing N, O-Containing micro/mesoporous covalent triazinebased frameworks toward a detailed analysis of the combined effect of N, O heteroatoms on electrochemical performance[J]. Nano Energy, 2020, 74: 10. https://doi.org/10.1016/j.nanoen.2020.104789 [16] Liu Z S, Qin A M, Zhang K Y, et al. Design and structure of nitrogen and oxygen co-doped carbon spheres with wrinkled nanocages as active material for supercapacitor application[J]. Nano Energy, 2021, 90: 9. https://doi.org/10.1016/j.nanoen.2021.106540 [17] Yu S N, Chen J J, Chen C, et al. What happens when graphdiyne encounters doping for electrochemical energy conversion and storage[J]. Coord Chem Rev, 2023, 482: 29. https://doi.org/10.1016/j.ccr.2023.215082 [18] Liu X H, Kang J J, Dai Y, et al. Graphene-Like Nitrogen- Doped Carbon Nanosheet Prepared from Direct Calcination of Dopamine Confined by g-C3N4 for Oxygen Reduction[J]. Adv Mater Interfaces, 2018, 5(14): 8. https://doi.org/10.1002/admi.201800303 [19] Chen Y W, Hu R, Qi J Q, et al. Sustainable synthesis of N/S-doped porous carbon sheets derived from waste newspaper for high-performance asymmetric supercapacitor[J]. Mater Res Express, 2019, 6(9): 11. https://doi.org/10.1088/2053-1591/ab2d97 [20] Yang F, Jiang P Z, Wu Q Q, et al. Preparation and Lithium- Ion Capacitance Performance of Nitrogen and Sulfur Co-Doped Carbon Nanosheets with Limited Space via the Vermiculite Template Method[J]. Molecules, 2024, 29(2): 17. https://doi.org/10.3390/molecules29020536 [21] Hu C, Liang Q R, Yang Y T, et al. Conductivity-enhanced porous N/P co-doped metal-free carbon significantly enhances oxygen reduction kinetics for aqueous/ flexible zinc-air batteries[J]. J Colloid Interface Sci, 2023, 633: 500-10. https://doi.org/10.1016/j.jcis.2022.11.118 [22] Cheng N, Zhao J G, Fan L, et al. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium- ion batteries anode[J]. Chem Commun, 2019, 55(83): 12511-4. https://doi.org/10.1039/c9cc06561j [23] Zhao X, Ding Y, Xu Q, et al. Low-Temperature Growth of Hard Carbon with Graphite Crystal for Sodium-Ion Storage with High Initial Coulombic Efficiency: A General Method[J]. Adv Energy Mater, 2019, 9(10): 10. https://doi.org/10.1002/aenm.201803648 [24] Yang K X, Tang J F, Liu Y, et al. Controllable Synthesis of Peapod-like Sb@C and Corn-like C@Sb Nanotubes for Sodium Storage[J]. ACS Nano, 2020, 14(5): 5728-37. https://doi.org/10.1021/acsnano.0c00366 [25] Shao W L, Hu F Y, Liu S Y, et al. Carbon spheres with rational designed surface and secondary particle-piled structures for fast and stable sodium storage[J]. J Energy Chem, 2021, 54: 368-76. https://doi.org/10.1016/j.jechem.2020.06.031 [26] Ma W S, Wang J W, Gao H, et al. A mesoporous antimony- based nanocomposite for advanced sodium ion batteries[J]. Energy Storage Mater, 2018, 13: 247-56. https://doi.org/10.1016/j.ensm.2018.01.016 [27] Hong K S, Nam D H, Lim S J, et al. Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries [J]. ACS Appl Mater Interfaces, 2015, 7(31): 17264-71. https://doi.org/10.1021/acsami.5b04225 [28] Li X Y, Sun M L, Ni J F, et al. Template-Free Construction of Self-Supported Sb Prisms with Stable Sodium Storage[J]. Adv Energy Mater, 2019, 9(24): 7. https://doi.org/10.1002/aenm.201901096 [29] Ge X F, Liu S H, Qiao M, et al. Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannel-Containing Carbon Nanofibers[J]. Angew Chem-Int Edit, 2019, 58(41): 14578-83. https://doi.org/10.1002/anie.201908918 [30] Zhou J S, Lian J, Hou L, et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nat Commun, 2015, 6: 8. https://doi.org/10.1038/ncomms9503 [31] Ju W, Bagger A, Hao G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nat Commun, 2017, 8: 9. https://doi.org/10.1038/s41467-017-01035-z [32] Hu X, Jia J C, Wang G X, et al. Reliable and General Route to Inverse Opal Structured Nanohybrids of Carbon- Confined Transition Metal Sulfides Quantum Dots for High-Performance Sodium Storage[J]. Adv Energy Mater, 2018, 8(25): 13. https://doi.org/10.1002/aenm.201801452 [33] Zhang J T, Dai L M. Nitrogen, Phosphorus, and Fluorine Tri-doped Graphene as a Multifunctional Catalyst for Self-Powered Electrochemical Water Splitting[J]. Angew Chem-Int Edit, 2016, 55(42): 13296-300. https://doi.org/10.1002/anie.201607405 [34] Li Z H, Li X L, Zhou L, et al. A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks[J]. Nano Energy, 2018, 49: 179-85. https://doi.org/10.1016/j.nanoen.2018.04.040 [35] Liu S, Feng J K, Bian X F, et al. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries[J]. Energy Environ Sci, 2016, 9(4): 1229-36. https://doi.org/10.1039/c5ee03699b [36] Brousse T, Belanger D, Long J W. To Be or Not To Be Pseudocapacitive? [J]. Journal of the Electrochemical Society, 2015, 162(5): A5185-A9. [37] Cheng X L, Shao R W, Li D J, et al. A Self-Healing Volume Variation Three-Dimensional Continuous Bulk Porous Bismuth for Ultrafast Sodium Storage[J]. Adv Funct Mater, 2021, 31(22): 9. https://doi.org/10.1002/adfm.202011264