2025年6月24日 星期二
Sb@N/F共掺杂碳纳米复合材料制备及其储钠性能研究
Preparation of Sb@N/F Co-Doped Carbon Nanocomposites and Their Sodium Storage Properties
摘要

锑 (Sb) 基材料具有高的理论容量 (660mAh g-1) 和合适的钠离子嵌入电位, 被认为是最有发展前景的钠离子电池阳极材料之一, 有望改善钠离子电池容量较低的问题。但是, Sb在充放电过程中的体积膨胀显著, 无法稳定发挥其储能优势。本文通过在液相还原过程中引入N/F共掺杂碳纳米片 (NF-CNs) 诱导形成纳米化的Sb颗粒, 从而缓解Sb的体积膨胀现象, 防止Sb在充放电过程中的聚集和粉碎。其次, Sb纳米颗粒可以与电解质溶液充分接触, 缩短离子扩散路径, 从而改善电极材料的动力学特性。引入的碳基质不仅可以防止循环过程中Sb纳米颗粒的团聚, 也为离子和电子的快速转移提供了高导电性通路。基于上述优化, Sb@NF-CNs阳极的储钠性能得到明显改善, 组装的钠离子电池在电流密度为0. 1A g-1 时, 经过50 次循环充放电后, 可逆容量为304. 7mAh g-1, 在电流密度为1. 0A g-1时, 经过200次循环充放电后, 可逆容量仍可达163mAh g-1, 并具有优异的倍率性能。

Abstract

Antimony (Sb) -based materials with high theoretical capacity (660mAh g-1) and suitable sodium ion embedding potentials are considered as one of the promising anode materials for sodium-ion batteries, which is expected to improve the low capacity of sodium-ion batteries. However, its volume expansion during the charge/discharge process is evident, thus failing to stabilize its capacity advantage. Herein, nanosized Sb particles are induced to form. by introducing N/F co-doped carbon nanosheets (NF-CNs) during the liquid phase reduction process, which alleviates the volume expansion phenomenon of Sb and prevents Sb aggregation and pulverization during the charge/discharge process. Secondly, the Sb nanoparticles can contact with the electrolyte solution sufficiently and shorten the ion diffusion route, thus improving the kinetic characteristics of the material. The introduced carbon matrix not only prevents agglomeration of Sb nanoparticles during the cycling process, but also provides a highly conductive pathway for the rapid ion and electron transfer. Based on the above optimization, the sodium storage performance of the Sb@NF-CNs anode is significantly improved, and the assembled sodium-ion battery has a reversible capacity of 304. 7mAh g-1 after 50 cycles at the current density of 0. 1A g-1 and a reversible capacity of 163mAh g-1 after 200 cycles at the current density of 1. 0A g-1 with excellent rate performance.  

DOI10.48014/pcms.20240419002
文章类型研究性论文
收稿日期2024-04-19
接收日期2024-04-29
出版日期2024-09-28
关键词锑基材料, 杂原子掺杂碳, 阳极, 储钠
KeywordsAntimony-based material, heteroatom-doped carbon, anode, sodium storage
作者张津凤1, 裴梦凡1, 曲云鹏1, 刘冬明1, 胡方圆1,*, 蹇锡高2,*
AuthorZHANG Jinfeng1, PEI Mengfan1, QU Yunpeng1, LIU Dongming1, HU Fangyuan1,*, JIAN Xigao2,*
所在单位1. 大连理工大学材料科学与工程学院, 大连 116024
2. 大连理工大学化工学院, 大连 116024.
Company1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
浏览量278
下载量96
基金项目本项研究得到了国家自然科学基金优秀青年基金项目(52222314)、
临近空间科技与产业引导基金项目(LKJJ-2023010-01)、
中国石油科技创新基金项目(2021DQ02-1001)、
大连市杰出青年科技人才项目(2023RJ006)、
大连市科技创新项目(2022JJ12GX022)、
大连理工大学星海学者培育项目———星海优青(X20200303)的资助。
参考文献[1] Usiskin R, Lu Y X, Popovic J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nat Rev Mater, 2021, 6(11): 1020-35.
https://doi.org/10.1038/s41578-021-00324-w
[2] Liu S Y, Shao W L, Zhang W S, et al. Regulating microstructures of soft carbon anodes by terminations of Ti3C2Tx MXene toward fast and stable sodium storage[J]. Nano Energy, 2021, 87: 12.
https://doi.org/10.1016/j.nanoen.2021.106097
[3] Fang Y J, Luan D Y, Chen Y, et al. Rationally Designed Three-Layered Cu2S @ Carbon @ MoS2 Hierarchical Nanoboxes for Efficient Sodium Storage[J]. Angew Chem-Int Edit, 2020, 59(18): 7178-83.
https://doi.org/10.1002/anie.201915917
[4] An Y L, Tian Y, Ci L J, et al. Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries[J]. ACS Nano, 2018, 12(12): 12932-40.
https://doi.org/10.1021/acsnano.8b08740
[5] Liu Q, Fan L, Ma R F, et al. Super long-life potassiumion batteries based on an antimony@carbon composite anode[J]. Chem Commun, 2018, 54(83): 11773-6.
https://doi.org/10.1039/c8cc05257c
[6] Zhong X, Duan J M, Xiang Y E, et al. Constructing Rich Interfacial Structure by Carbon Dots to Improve the Sodium Storage Capacity of Sb/C Composite[J]. Adv Funct Mater, 2023, 33(52): 12.
https://doi.org/10.1002/adfm.202306574
[7] Liu D Y, Yang L, Chen Z Y, et al. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries[J]. Sci Bull, 2020, 65(12): 1003-12.
https://doi.org/10.1016/j.scib.2020.03.019
[8] Wu L, Hu X H, Qian J F, et al. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries[J]. Energy Environ Sci, 2014, 7(1): 323-8.
https://doi.org/10.1039/c3ee42944j
[9] Liu J, Yu L T, Wu C, et al. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@ C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/ Na-Ion Batteries[J]. Nano Lett, 2017, 17(3): 2034-42.
https://doi.org/10.1021/acs.nanolett.7b00083
[10] Gu Y, Cui R C, Wang G Y, et al. Sb/N-Doped Carbon Nanofiber as a Sodium-Ion Battery Anode[J]. Energy Technol, 2022, 10(12): 10.
https://doi.org/10.1002/ente.202200746
[11] Xu A D, Xia Q, Zhang S K, et al. Ultrahigh Rate Performance of Hollow Antimony Nanoparticles Impregnated in Open Carbon Boxes for Sodium-Ion Battery under Elevated Temperature[J]. Small, 2019, 15(45): 10.
https://doi.org/10.1002/smll.201903521
[12] Wu C, Shen L F, Chen S Q, et al. Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage[J]. Energy Storage Mater, 2018, 10: 122-9.
https://doi.org/10.1016/j.ensm.2017.08.011
[13] Cui C Y, Xu J T, Zhang Y Q, et al. Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes[J]. Nano Lett, 2019, 19(1): 538-44.
https://doi.org/10.1021/acs.nanolett.8b04468
[14] Luo W, Li F, Gaumet J J, et al. Bottom-Up Confined Synthesis of Nanorod-in-Nanotube Structured Sb@N-C for Durable Lithium and Sodium Storage[J]. Adv Energy Mater, 2018, 8(19): 9.
https://doi.org/10.1002/aenm.201703237
[15] Hu F Y, Zhang T P, Wang J Y, et al. Constructing N, O-Containing micro/mesoporous covalent triazinebased frameworks toward a detailed analysis of the combined effect of N, O heteroatoms on electrochemical performance[J]. Nano Energy, 2020, 74: 10.
https://doi.org/10.1016/j.nanoen.2020.104789
[16] Liu Z S, Qin A M, Zhang K Y, et al. Design and structure of nitrogen and oxygen co-doped carbon spheres with wrinkled nanocages as active material for supercapacitor application[J]. Nano Energy, 2021, 90: 9.
https://doi.org/10.1016/j.nanoen.2021.106540
[17] Yu S N, Chen J J, Chen C, et al. What happens when graphdiyne encounters doping for electrochemical energy conversion and storage[J]. Coord Chem Rev, 2023, 482: 29.
https://doi.org/10.1016/j.ccr.2023.215082
[18] Liu X H, Kang J J, Dai Y, et al. Graphene-Like Nitrogen- Doped Carbon Nanosheet Prepared from Direct Calcination of Dopamine Confined by g-C3N4 for Oxygen Reduction[J]. Adv Mater Interfaces, 2018, 5(14): 8.
https://doi.org/10.1002/admi.201800303
[19] Chen Y W, Hu R, Qi J Q, et al. Sustainable synthesis of N/S-doped porous carbon sheets derived from waste newspaper for high-performance asymmetric supercapacitor[J]. Mater Res Express, 2019, 6(9): 11.
https://doi.org/10.1088/2053-1591/ab2d97
[20] Yang F, Jiang P Z, Wu Q Q, et al. Preparation and Lithium- Ion Capacitance Performance of Nitrogen and Sulfur Co-Doped Carbon Nanosheets with Limited Space via the Vermiculite Template Method[J]. Molecules, 2024, 29(2): 17.
https://doi.org/10.3390/molecules29020536
[21] Hu C, Liang Q R, Yang Y T, et al. Conductivity-enhanced porous N/P co-doped metal-free carbon significantly enhances oxygen reduction kinetics for aqueous/ flexible zinc-air batteries[J]. J Colloid Interface Sci, 2023, 633: 500-10.
https://doi.org/10.1016/j.jcis.2022.11.118
[22] Cheng N, Zhao J G, Fan L, et al. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium- ion batteries anode[J]. Chem Commun, 2019, 55(83): 12511-4.
https://doi.org/10.1039/c9cc06561j
[23] Zhao X, Ding Y, Xu Q, et al. Low-Temperature Growth of Hard Carbon with Graphite Crystal for Sodium-Ion Storage with High Initial Coulombic Efficiency: A General Method[J]. Adv Energy Mater, 2019, 9(10): 10.
https://doi.org/10.1002/aenm.201803648
[24] Yang K X, Tang J F, Liu Y, et al. Controllable Synthesis of Peapod-like Sb@C and Corn-like C@Sb Nanotubes for Sodium Storage[J]. ACS Nano, 2020, 14(5): 5728-37.
https://doi.org/10.1021/acsnano.0c00366
[25] Shao W L, Hu F Y, Liu S Y, et al. Carbon spheres with rational designed surface and secondary particle-piled structures for fast and stable sodium storage[J]. J Energy Chem, 2021, 54: 368-76.
https://doi.org/10.1016/j.jechem.2020.06.031
[26] Ma W S, Wang J W, Gao H, et al. A mesoporous antimony- based nanocomposite for advanced sodium ion batteries[J]. Energy Storage Mater, 2018, 13: 247-56.
https://doi.org/10.1016/j.ensm.2018.01.016
[27] Hong K S, Nam D H, Lim S J, et al. Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries [J]. ACS Appl Mater Interfaces, 2015, 7(31): 17264-71.
https://doi.org/10.1021/acsami.5b04225
[28] Li X Y, Sun M L, Ni J F, et al. Template-Free Construction of Self-Supported Sb Prisms with Stable Sodium Storage[J]. Adv Energy Mater, 2019, 9(24): 7.
https://doi.org/10.1002/aenm.201901096
[29] Ge X F, Liu S H, Qiao M, et al. Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannel-Containing Carbon Nanofibers[J]. Angew Chem-Int Edit, 2019, 58(41): 14578-83.
https://doi.org/10.1002/anie.201908918
[30] Zhou J S, Lian J, Hou L, et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nat Commun, 2015, 6: 8.
https://doi.org/10.1038/ncomms9503
[31] Ju W, Bagger A, Hao G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nat Commun, 2017, 8: 9.
https://doi.org/10.1038/s41467-017-01035-z
[32] Hu X, Jia J C, Wang G X, et al. Reliable and General Route to Inverse Opal Structured Nanohybrids of Carbon- Confined Transition Metal Sulfides Quantum Dots for High-Performance Sodium Storage[J]. Adv Energy Mater, 2018, 8(25): 13.
https://doi.org/10.1002/aenm.201801452
[33] Zhang J T, Dai L M. Nitrogen, Phosphorus, and Fluorine Tri-doped Graphene as a Multifunctional Catalyst for Self-Powered Electrochemical Water Splitting[J]. Angew Chem-Int Edit, 2016, 55(42): 13296-300.
https://doi.org/10.1002/anie.201607405
[34] Li Z H, Li X L, Zhou L, et al. A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks[J]. Nano Energy, 2018, 49: 179-85.
https://doi.org/10.1016/j.nanoen.2018.04.040
[35] Liu S, Feng J K, Bian X F, et al. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries[J]. Energy Environ Sci, 2016, 9(4): 1229-36.
https://doi.org/10.1039/c5ee03699b
[36] Brousse T, Belanger D, Long J W. To Be or Not To Be Pseudocapacitive? [J]. Journal of the Electrochemical Society, 2015, 162(5): A5185-A9.
[37] Cheng X L, Shao R W, Li D J, et al. A Self-Healing Volume Variation Three-Dimensional Continuous Bulk Porous Bismuth for Ultrafast Sodium Storage[J]. Adv Funct Mater, 2021, 31(22): 9.
https://doi.org/10.1002/adfm.202011264
引用本文张津凤, 裴梦凡, 曲云鹏, 等. Sb@N/F共掺杂碳纳米复合材料制备及其储钠性能研究[J]. 中国材料科学进展, 2024, 3(3): 29-41.
CitationZHANG Jinfeng, PEI Mengfan, QU Yunpeng, et al. Preparation of Sb@N/F co-doped carbon nanocomposites and their sodium storage properties[J]. Progress in Chinese Materials Sciences, 2024, 3(3): 29-41.