参考文献
[1] CHAMPION H R, BELLAMY R F, ROBERTS C P, et al. A Profile of Combat Injury[J]. Journal of Trauma and Acute Care Surgery, 2003, 54(5): S13-S19. https://doi.org/10.1097/01.TA.0000057151.02906.27 [2] BEHRENS A M, SIKORSKI M J, KOFINAS P. Hemostatic strategies for traumatic and surgical bleeding[J]. Journal of Biomedical Materials Research Part A, 2014, 102(11): 4182-4194. https://doi.org/10.1002/jbm.a.35052 [3] GUO B, DONG R, LIANG Y, et al. Haemostatic materials for wound healing applications[J]. Nature Reviews Chemistry, 2021, 5(11): 773-791. https://doi.org/10.1038/s41570-021-00323-z [4] 郭姝彤, 刘永仙, 艾彩莲, 等. 五倍子有效成分提取分离、药理作用及临床应用研究进展[J]. 陕西中医, 2015, 36(06): 762-764. [5] SHI J, PUIG R, SANG J, et al. A comprehensive evaluation of physical and environmental performances for wet-white leather manufacture[J]. Journal of Cleaner Production, 2016, 139: 1512-1519. https://doi.org/10.1016/j.jclepro.2016.08.120 [6] 黄国柱. 用单宁酸预防黄酒非生物混浊的研究[J]. 酿酒科技, 2002(05): 67-68. [7] 常丽, 陈安国, 黄思齐, 等. 单宁酸在抗菌及伤口愈合中的研究进展[J]. 中国麻业科学, 2022, 44(01): 63-68. [8] ZHANG X Y, LIU M Y, ZHANG X Q, et al. Interaction of tannic acid with carbon nanotubes: enhancement of dispersibility and biocompatibility[J]. Toxicology Research, 2015, 4(1): 160-168. DOI:10.1039/c4tx00066h [9] HASLAM E, LILLEY T H, CAI Y, et al. Traditional herbal medicines - the role of polyphenols[J]. Planta Medica, 1989(1): 1-8. [10] GUO J, SUN W, KIM J P, et al. Development of tannininspired antimicrobial bioadhesives[J]. Acta Biomater, 2018, 72: 35-44. https://doi.org/10.1016/j.actbio.2018.03.008 [11] GUO J L, PING Y, EJIMA H, et al. Engineering Multifunctional Capsules through the Assembly of Metal- Phenolic Networks[J]. Angewandte Chemie-International Edition, 2014, 53(22): 5546-5551. https://doi.org/1002/anie.201311136 [12] YI Z, LI X, XU X, et al. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392(1): 131-136. https://doi.org/10.1016/j.colsurfa.2011.09.045 [13] TAN L, ZHOU X, WU K, et al. Tannic acid/Ca(II)anchored on the surface of chitin nanofiber sponge by layer- by-layer deposition: Integrating effective antibacterial and hemostatic performance[J]. Int J Biol Macromol, 2020, 159: 304-315. https://doi.org/10.1016/j.ijbiomac.2020.05.098 [14] WANG Y, LIU F, YAN N, et al. Exploration of Fe(III)-Phenol Complexes for Photothermal Therapy and Photoacoustic Imaging[J]. ACS Biomater Sci Eng, 2019, 5(9): 4700-4707. https://doi.org/10.1021/acsbiomaterials.9b00711 [15] CHEN C, YANG H, YANG X, et al. Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review [J]. RSC Adv, 2022, 12(13): 7689-7711. https://doi.org/10.1039/d1ra07657d [16] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. https://doi.org/10.1126/science.1147241 [17] ZHANG W, WANG R X, SUN Z M, et al. Catecholfunctionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications[J]. Chemical Society Reviews, 2020, 49(2): 433-464. https://doi.org/10.1039/c9cs00285e [18] KE X, DONG Z, TANG S, et al. A natural polymer based bioadhesive with self-healing behavior and improved antibacterial properties[J]. Biomater Sci, 2020, 8(15): 4346-4357. https://doi.org/10.1039/d0bm00624f [19] NINAN N, FORGET A, SHASTRI V P, et al. Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28511-28521. https://doi.org/10.1021/acsami.6b10491 [20] 程胜平, 周世龙, 陆维宏. 内镜直视下应用中药复方石榴皮五倍子诃子液对上消化道出血的疗效观察[J]. 中华中医药学刊, 2014, 32(02): 432-434. https://doi.org/10.13193/j.issn.1673-7717.2014.02.073 [21] 樊祥堃, 潘翠屏. 五倍子液的制备及临床应用报告[J]. 苏州医学院学报, 1997(03): 430-431. [22] 宋昕祁, 管咏梅, 张建林, 等. 复方止血消炎软膏抗炎抑菌作用的实验研究[J]. 江西中医药, 2019, 50(12): 62-65. [23] 王鑫淼, 许杨, 王崧, 等. 植物化合物对血小板功能的影响[J]. 西部中医药, 2018, 31(01): 126-131. [24] LI N, YANG X, LIU W, et al. Tannic Acid Cross-linked Polysaccharide-Based Multifunctional Hemostatic Microparticles for the Regulation of Rapid Wound Healing[J]. Macromol Biosci, 2018, 18(11): e1800209. https://doi.org/10.1002/mabi.201800209 [25] FREUND J. Phagocytosis of Red Blood-Cells Treated by Tannin[J]. Proceedings of the Society for Experi- mental Biology and Medicine, 1929, 26(9): 876-878. https://doi.org/10.3181/00379727-26-4568 [26] FREUND J. On the Mechanism of Toxin-Antitoxin Reactions[ J]. The Journal of Immunology, 1931, 21(2): 127-137. https://doi.org/10.4049/jimmunol.21.2.127 [27] BOYDEN S V. The adsorption of proteins on erythrocytes treated with tannic acid and subsequent hemagglutination by antiprotein sera[J]. Journal of Experimental Medicine, 1951, 93(2): 107-120. https://doi.org/10.1084/jem.93.2.107 [28] 吴苏南. 单宁酸对血小板生成的影响及抗辐射作用研究[D]. 重庆: 第三军医大学, 2015. [29] SONG B, YANG L, HAN L, et al. Metal Ion-Chelated Tannic Acid Coating for Hemostatic Dressing[J]. Materials( Basel), 2019, 12(11): 1803. https://doi.org/10.3390/ma12111803 [30] LIU J Y, HU Y, LI L, et al. Biomass-Derived Multilayer- Structured Microparticles for Accelerated Hemostasis and Bone Repair[J]. Advanced Science, 2020, 7(22): 2002243. https://doi.org/10.1002/advs.202002243 [31] GENG H, DAI Q, SUN H, et al. Injectable and Sprayable Polyphenol-Based Hydrogels for Controlling Hemostasis[J]. ACS Applied Bio Materials, 2020, 3(2): 1258-1266. https://doi.org/10.1021/acsabm.9b01138 [32] QIAO Z, LV X, HE S, et al. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings[J]. Bioact Mater, 2021, 6(9): 2829-2840. https://doi.org/10.1016/j.bioactmat.2021.01.039 [33] DONG G F, LIU H Y, YU X, et al. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus[J]. Natural Product Research, 2018, 32(18): 2225-2228. https://doi.org/10.1080/14786419.2017.1366485 [34] SAMOILOVA Z, TYULENEV A, MUZYKA N, et al. Tannic and gallic acids alter redox-parameters of the medium and modulate biofilm formation[J]. Aims Microbiology, 2019, 5(4): 379-392. https://doi.org/10.3934/microbiol.2019.4.379 [35] NATARAJAN V, KRITHICA N, MADHAN B, et al. Preparation and properties of tannic acid cross-linked collagen scaffold and its application in wound healing[J]. J Biomed Mater Res B Appl Biomater, 2013, 101(4): 560-567. https://doi.org/10.1002/jbm.b.32856 [36] LEE J H, PARK J H, CHO H S, et al. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus[J]. Biofouling, 2013, 29(5): 491-499. https://doi.org/10.1080/08927014.2013.788692 [37] GAO X, XU Z, LIU G, et al. Polyphenols as a versatile component in tissue engineering[J]. Acta Biomater, 2021, 119: 57-74. https://doi.org/10.1016/j.actbio.2020.11.004 [38] FAN H, WANG L, FENG X, et al. Supramolecular Hydrogel Formation Based on Tannic Acid[J]. Macromolecules, 2017, 50(2): 666-676. https://doi.org/10.1021/acs.macromol.6b02106 [39] DU Y, QIU W Z, WU Z L, et al. Water-Triggered Self- Healing Coatings of Hydrogen-Bonded Complexes for High Binding Affinity and Antioxidative Property[J]. Advanced Materials Interfaces, 2016, 3(15): 1600167. https://doi.org/10.1002/admi.201600167 [40] CHEN Y Q, TIAN L B, YANG F Y, et al. Tannic Acid Accelerates Cutaneous Wound Healing in Rats Via Activation of the ERK 1/2 Signaling Pathways[J]. Advances In Wound Care, 2019, 8(7): 341-354. https://doi.org/10.1089/wound.2018.0853 [41] 王宏英, 魏海峰, 王卫芳, 等. 单宁酸对肾癌细胞生长的抑制作用及其机制[J]. 中国免疫学杂志, 2019, 35(17): 2089-2093. [42] DARVIN P, BAEG S J, JOUNG Y H, et al. Tannic acid inhibits the Jak2/STAT3 pathway and induces G1/S arrest and mitochondrial apoptosis in YD-38 gingival cancer cells[J]. International Journal of Oncology, 2015, 47(3): 1111-1120. https://doi.org/10.3892/ijo.2015.3098 [43] RODRIGUES M, KOSARIC N, BONHAM C A, et al. Wound Healing: A Cellular Perspective[J]. Physiol Rev, 2019, 99(1): 665-706. https://doi.org/10.1152/physrev.00067.2017 [44] AHMADIAN Z, CORREIA A, HASANY M, et al. A Hydrogen-Bonded Extracellular Matrix-Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pH-Responsive Wound Healing Acceleration[J]. Adv Healthc Mater, 2021, 10(3): e2001122. https://doi.org/10.1002/adhm.202001122 [45] LIU H, LI Z, CHE S, et al. A smart hydrogel patch with high transparency, adhesiveness and hemostasis for allround treatment and glucose monitoring of diabetic foot ulcers[J]. J Mater Chem B, 2022, 10(30): 5804-5817. https://doi.org/10.1039/d2tb01048h [46] LIANG Y, HE J, GUO B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing[J]. ACS Nano, 2021, 15(8): 12687-12722. https://doi.org/10.1021/acsnano.1c04206 [47] ZHOU Z, XIAO J, GUAN S, et al. A hydrogen-bonded antibacterial curdlan-tannic acid hydrogel with an antioxidant and hemostatic function for wound healing[J]. Carbohydr Polym, 2022, 285: 119235. https://doi.org/10.1016/j.carbpol.2022.119235 [48] SHIN M, RYU J H, PARK J P, et al. DNA/Tannic Acid Hybrid Gel Exhibiting Biodegradability, Extensibility, Tissue Adhesiveness, and Hemostatic Ability[J]. Advanced Functional Materials, 2015, 25(8): 1270-1278. https://doi.org/10.1002/adfm.201403992 [49] FAN H, WANG J, JIN Z. Tough, Swelling-Resistant, Self-Healing, and Adhesive Dual-Cross-Linked Hydrogels Based on Polymer-Tannic Acid Multiple Hydrogen Bonds[J]. Macromolecules, 2018, 51(5): 1696-1705. https://doi.org/10.1021/acs.macromol.7b02653 [50] FAN X, WANG S, FANG Y, et al. Tough polyacrylamide- tannic acid-kaolin adhesive hydrogels for quick hemostatic application[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110649. https://doi.org/10.1016/j.msec.2020.110649 [51] 曾娜. 介孔二氧化硅/单宁酸复合水凝胶止血材料的制备及性能研究[D]. 延吉: 延边大学, 2022. https://doi.org/10.27439/d.cnki.gybdu.2022.000650 [52] MEHDIZADEH M, YANG J. Design strategies and applications of tissue bioadhesives[J]. Macromol Biosci, 2013, 13(3): 271-288. https://doi.org/10.1002/mabi.201200332 [53] KIM K, SHIN M, KOH M Y, et al. TAPE: A Medical Adhesive Inspired by a Ubiquitous Compound in Plants[J]. Advanced Functional Materials, 2015, 25(16): 2402-2410. https://doi.org/10.1002/adfm.201500034 [54] ZHANG D F, XU Z Y, LI H F, et al. Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities[J]. Biomaterials Science, 2020, 8(5): 1455-1463. https://doi.org/10.1039/c9bm02029b [55] BAI S, ZHANG X, CAI P, et al. A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues[J]. Nanoscale Horizons, 2019, 4(6): 1333-1341. https://doi.org/10.1039/c9nh00317g [56] ANNABI N, ZHANG Y N, ASSMANN A, et al. Engineering a highly elastic human protein-based sealant for surgical applications[J]. Science Translational Medicine, 2017, 9(410): eaai7466. https://doi.org/10.1126/scitranslmed.aai7466 [57] LAN G, LU B, WANG T, et al. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent[J]. Colloids and Surfaces B: Biointerfaces, 2015, 136: 1026-1034. https://doi.org/10.1016/j.colsurfb.2015.10.039 [58] CAO S, XU G, LI Q, et al. Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair[J]. Composites Part B: Engineering, 2022, 234: 109746. https://doi.org/10.1016/j.compositesb.2022.109746 [59] YU Y, LI P, ZHU C, et al. Multifunctional and Recyclable Photothermally Responsive Cryogels as Efficient Platforms for Wound Healing[J]. Advanced Functional Materials, 2019, 29(35): 1904402. https://doi.org/10.1002/adfm.201904402 [60] CHEN J, ZHAO L, LING J, et al. A quaternized chitosan and carboxylated cellulose nanofiber-based sponge with a microchannel structure for rapid hemostasis and wound healing[J]. Int J Biol Macromol, 2023: 123631. https://doi.org/10.1016/j.ijbiomac.2023.123631 [61] EJIMA H, RICHARDSON J J, LIANG K, et al. One- Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering[J]. Science, 2013, 341(6142): 154-157. https://doi.org/10.1126/science.1237265 [62] KOZLOVSKAYA V, ZAVGORODNYA O, CHEN Y, et al. Ultrathin polymeric coatings based on hydrogenbonded polyphenol for protection of pancreatic islet cells[J]. Adv Funct Mater, 2012, 22(16): 3389-3398. https://doi.org/10.1002/adfm.201200138 [63] SHUKLA A, FANG J C, PURANAM S, et al. Hemostatic multilayer coatings[J]. Adv Mater, 2012, 24(4): 492-496. https://doi.org/10.1002/adma.201103794 [64] YIN X, REN J, LAN W, et al. Microfluidics-assisted optimization of highly adhesive haemostatic hydrogel coating for arterial puncture[J]. Bioact Mater, 2022, 12: 133-142. https://doi.org/10.1016/j.bioactmat.2021.10.009 [65] LIU L, SHI H C, YU H, et al. One-step hydrophobization of tannic acid for antibacterial coating on catheters to prevent catheter-associated infections[J]. Biomaterials Science, 2019, 7(12): 5035-5043. https://doi.org/10.1039/c9bm01223k [66] KHEIRABADI B S, MACE J E, TERRAZAS I B, et al. Safety Evaluation of New Hemostatic Agents, Smectite Granules, and Kaolin-Coated Gauze in a Vascular Injury Wound Model in Swine[J]. Journal of Trauma-Injury Infection and Critical Care, 2010, 68(2): 269-277. https://doi.org/10.1097/TA.0b013e3181c97ef1 [67] WANG C, ZHOU H, NIU H, et al. Tannic acid-loaded mesoporous silica for rapid hemostasis and antibacterial activity[J]. Biomater Sci, 2018, 6(12): 3318-3331. https://doi.org/10.1039/c8bm00837j [68] CHEN J, QIU L, LI Q, et al. Rapid hemostasis accompanied by antibacterial action of calcium crosslinking tannic acid-coated mesoporous silica/silver Janus nanoparticles[J]. Mater Sci Eng C Mater Biol Appl, 2021, 123: 111958. https://doi.org/10.1016/j.msec.2021.111958