2024年4月20日 星期六
集值向量优化问题E-超有效解的非线性标量化刻画
Nonlinear Scalarization Characterizations of E-Super Efficient Solution of Set-valued Vector Optimization Problem
摘要

在向量优化问题研究中, 基于序锥定义的 (弱) 有效解的概念及其性质具有十分重要的作用。超有效解的概念是对已有的几种真有效解的概念的统一, 而基于改进集而提出的向量优化问题的E-超有效解是对经典的超有效解概念的重要推广, 它统一了超有效性和ε-超有效性的概念。因此, 研究E-超有效解及其相关性质对研究向量优化问题具有十分重要的意义。本文主要对E-超有效解非线性标量化的相关条件进行研究: 首先通过半范数p的相应性质得到集值向量优化问题的E-超有效解非线性标量化的一个充要条件; 其次利用距离函数d的相关性质得到E-超有效解非线性标量化的另一个充要条件; 再次根据E-最优解与E-超有效解之间的关系, 在E=E+K0的条件下通过基于改进集E的面向距离函数Δ-E得出E-超有效解非线性标量化结果的一个充分条件; 最后, 在0∈clE的条件下利用面向距离函数Δ-E得出E-超有效解非线性标量化结果的一个必要条件, 并推导出相应的充要结果。

Abstract

Abstract: In the study of vector optimization problems, the concept of (weakly) effective solution based on the definition of order cone and its properties play a very important role. The concept of superefficient solution is the unification of several existing concept of properly efficient solutions, while the E- super efficient solution of the vector optimization problem proposed based on the improvement set is an important extension of the classical concept of superefficient solution, which unifies the concepts of superefficient solution and ε-super efficient solution. Therefore, it is of great significance to study the E- super efficient solution and its related properties for the study of vector optimization problems. This paper mainly focuses on the relevant conditions of nonlinear scalarization characterization of E- super efficient solution: firstly, a sufficient and necessary condition for the nonlinear scalarization characterization about the E- super efficient solution of the set-valued vector optimization problem is obtained through the corresponding property of the seminorm p; secondly, the corresponding property of the distance function d is used to obtain another sufficient and necessary condition for the nonlinear scalarization characterization of the E- super efficient solution; then, according to the relationship between the E-optimal solution and the E-super efficient solution, a sufficient condition for the results of nonlinear scalarization characterization of the E- super efficient solution is derived by means of the distance-oriented function Δ-E which based on the improved set E under the condition of E=E+K0; finally, under the condition of 0∈clE, the distance-oriented function Δ-E is used to obtain a necessary condition for the nonlinear scalarization result of E- super efficient solution, and the corresponding sufficient and necessary result is deduced.  

DOI10.48014/fcpm.20230420001
文章类型研究性论文
收稿日期2023-04-23
接收日期2023-05-18
出版日期2023-06-28
关键词集值向量优化, 改进集, E-超有效解, 非线性标量化, 半范数, 面向距离函数
KeywordsSet-valued vector optimization, improvement set, E-super efficient solution, nonlinear scalarization, seminorm, distance-oriented function
作者罗凤雅, 李飞*
AuthorLUO Fengya, LI Fei*
所在单位内蒙古大学数学科学学院, 呼和浩特 010021
CompanySchool of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
浏览量276
下载量105
基金项目国家自然科学基金项目(No.11601248)资助
参考文献[1] BORWEIN J M, ZHUANG D M. Super efficiency in convex vector optimization[J]. ZOR-Methods and Models of Operations Research, 1991, 35: 175-184.
https://dx.doi.org/10.1007/BF01415905
[2] BORWEIN J M, ZHUANG D M. Super efficiency in vector optimization[J]. Transactions of the American Mathematical Society, 1993, 338(1): 105-122.
https://dx.doi.org/10.1090/S0002-9947-1993-1098432-5
[3] ZHENG X Y. Proper efficiency in locally convex topological vector spaces[J]. Journal of Optimization Theory and Applications, 1997, 94(2): 469-486.
https://dx.doi.org/10.1023/A:1022648115446
[4] HU Y D, GONG X H. Super efficiency and its scalarization in topological vector space[J]. Acta Mathematicae Applicatae Sinica, 2000, 16(1): 22-26.
https://dx.doi.org/10.1007/BF02670960
[5] RONG W D, MA Y. ε-Properly efficient solutions of vector optimization problems with set-valued maps[J]. OR Transaction, 2000, 4(4): 21-32.
https://dx.doi.org/10.3969/j.issn.1007-6093.2000.04.003
[6] XU Y H, LIU S Y. Super efficiency in the nearly conesubconvexlike vector optimization with set-valued functions[J]. Acta Mathematica Scientia, 2005, 25B(1): 152-160.
https://dx.doi.org/10.1016/S0252-9602(17)30272-2
[7] 余丽. 关于集值优化问题超有效解和强有效解若干问题的研究[D]. 南昌: 南昌大学, 2007.
https://dx.doi.org/10.7666/d.y1238056
[8] 邵建英. 集值向量优化问题ε-超有效解的性质[J]. 应用数学与计算数学学报, 2003, 17(1): 67-72.
https://dx.doi.org/10.3969/j.issn.1006-6330.2003.01.011
[9] CHICCO M, MIGNANEGO F, PUSILLO L, et al. Vector optimization problems via improvement sets[J]. Journal of Optimization Theory and Applications, 2011, 150(3): 516-529.
https://dx.doi.org/10.1007/s10957-011-9851-1
[10] GUTIÉRREZ C, JIMÉNEZ B, NOVO V. Improvement sets and vector optimization[J]. European Journal of Operational Research, 2012, 223(2): 304-311.
https://dx.doi.org/10.1016/j.ejor.2012.05.050
[11] ZHAO K Q, YANG X M. E-benson proper efficiency in vector optimization[J]. Optimization, 2015, 64(4): 739-752.
https://dx.doi.org/10.1080/02331934.2013.798321
[12] ZHOU Z A, YANG X M, ZHAO K Q. E-super efficiency of set-valued optimization problems involving improvement sets[J]. Journal of Industrial and Management Optimization, 2016, 12(3): 1031-1039.
https://dx.doi.org/10.3934/jimo.2016.12.1031
[13] 林安, 刘学文. 向量优化中E-超有效解的最优性条件[J]. 西南大学学报(自然科学版), 2018, 40(7): 101-105.
https://dx.doi.org/10.13718/j.cnki.xdzk.2018.07.015
[14] 白霞, 李飞. 向量优化问题E-有效解的非线性标量化刻画[J]. 内蒙古大学学报(自然科学版), 2022, 53(4): 343-350.
https://dx.doi.org/10.13484/j.nmgdxxbzk.20220402
[15] ZAFFARONI A. Degrees of efficiency and degrees of minimality[J]. SIAM Journal on Control and Optimization, 2003, 42(3): 1071-1086.
https://dx.doi.org/10.1137/S0363012902411532
[16] ZHOU Z A, YANG X M. Scalarization of ε-super efficient solutions of set-valued optimization problems in real ordered linear spaces[J]. Journal of Optimization Theory and Applications, 2014, 162: 680-693.
https://dx.doi.org/10.1007/s10957-014-0565-z
[17] 秦晨. 向量优化改善集及E-最优解的最优性条件[D]. 重庆: 重庆大学, 2013.
https://dx.doi.org/10.7666/d.D355042
[18] 徐登州, 等. 拓扑线性空间[M]. 兰州: 兰州大学出版社, 1987.
引用本文罗凤雅, 李飞. 集值向量优化问题E-超有效解的非线性标量化刻画[J]. 中国理论数学前沿, 2023, 1(1): 14-20.
CitationLUO Fengya, LI Fei. Nonlinear scalarization characterizations of E- super efficient solution of setvalued vector optimization problem[J]. Frontiers of Chinese Pure Mathematics, 2023, 1(1): 14-20.